b:head_first_statistics:constructing_confidence_intervals

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:constructing_confidence_intervals [2019/12/10 01:19] – [Just one more problem...] hkimscilb:head_first_statistics:constructing_confidence_intervals [2025/10/29 04:03] (current) – [Four steps for finding confidence intervals] hkimscil
Line 10: Line 10:
 Rather than specify an exact value, we can specify two values we expect flavor duration to lie between.  Rather than specify an exact value, we can specify two values we expect flavor duration to lie between. 
  
-[{{:b:head_first_statistics:pasted:20191203-121916.png  }}] : As an example, you may want to choose a and b so that there’s a 95% chance of the interval containing the population mean. Finding the exact spot of a and b is the problem we are trying to solve.+<WRAP group> 
 +<WRAP 25% column> 
 +$\Large{P(a < \mu < b) = 0.95$   
 +</WRAP> 
 +<WRAP 50% column> 
 +As an example, you may want to choose a and b so that there’s a 95% chance of the interval containing the population mean. Finding the exact spot of a and b is the problem we are trying to solve.  
 +</WRAP> 
 +</WRAP>
  
 The far side of each end, (a, b) is called a **//confidence interval//**. The far side of each end, (a, b) is called a **//confidence interval//**.
Line 21: Line 28:
 <fs large>**Step 1:**</fs> Choose your population statistic <fs large>**Step 1:**</fs> Choose your population statistic
 If we go back to the work we did in the last chapter, then the sampling distribution of means has the following expectation and variance: If we go back to the work we did in the last chapter, then the sampling distribution of means has the following expectation and variance:
-{{:b:head_first_statistics:pasted:20191203-122301.png}}+ 
 +\begin{eqnarray*} 
 +E(\overline{X}) & = & \mu \\ 
 +V(\overline{X}) & = & \dfrac{\sigma^{2}} {n} \\  
 +\end{eqnarray*}
  
 <fs large>**Step 2**</fs>: Find its __**sampling distribution**__  <fs large>**Step 2**</fs>: Find its __**sampling distribution**__ 
 샘플평균들의 분산은 ($Var(\overline{X})$) 모집단의 특성인데 (parameter), 이를 알 수는 없으므로 아래와 같이 샘플의 분산값을 ($s^{2}$) 사용하여 샘플평균들의 분포를 만든다. 샘플평균들의 분산은 ($Var(\overline{X})$) 모집단의 특성인데 (parameter), 이를 알 수는 없으므로 아래와 같이 샘플의 분산값을 ($s^{2}$) 사용하여 샘플평균들의 분포를 만든다.
  
-{{:b:head_first_statistics:pasted:20191203-122550.png}}+\begin{eqnarray*} 
 +E(\overline{X}) & = & \mu \\ 
 +V(\overline{X}) & = & \dfrac{s^{2}} {n} \\  
 +\end{eqnarray*}
  
 위대한 풍선껌은 (Mighty Gumball) 100개의 풍선검을 샘플로 이용하여 단맛의 지속시간을 측정하고, 이 샘플의  위대한 풍선껌은 (Mighty Gumball) 100개의 풍선검을 샘플로 이용하여 단맛의 지속시간을 측정하고, 이 샘플의 
Line 33: Line 47:
 이를 이용하여 샘플평균들의 (n=100일 때) 분포의 (distribution) 분산값을 예측해보면 0.25를 얻는다. 이를 이용하여 샘플평균들의 (n=100일 때) 분포의 (distribution) 분산값을 예측해보면 0.25를 얻는다.
  
-{{:b:head_first_statistics:pasted:20191203-122843.png}}+ 
 +\begin{eqnarray*} 
 +V(\overline{X}) & = & \dfrac{s^{2}} {n} \\  
 +& = & \dfrac{25}{100} \\ 
 +& = & 1/4 \;\;\; (0.25) \\ 
 + 
 +\end{eqnarray*} 
  
 위를 일반화해서 생각해보면 $X \sim N(\mu, \sigma^{2})$이라고 할 때, 샘플의 숫자가 충분히 크다고 할 때 (n=100과 같이), $E(\overline{X})$ 값과 $Var(\overline{X})$ 값은 아래와 같다. 위를 일반화해서 생각해보면 $X \sim N(\mu, \sigma^{2})$이라고 할 때, 샘플의 숫자가 충분히 크다고 할 때 (n=100과 같이), $E(\overline{X})$ 값과 $Var(\overline{X})$ 값은 아래와 같다.
-{{:b:head_first_statistics:pasted:20191203-122946.png}}+ 
 +\begin{eqnarray*} 
 +\overline{X& \sim & N \left( \mu, \dfrac{s^{2}}{n} \right) \\ 
 +& & \text{for the above case   } \\ 
 +\overline{X} & \sim & N \left( \mu, 0.25 \right) \\ 
 +\end{eqnarray*}
  
 <fs large>**Step 3:**</fs> Decide on the level of confidence <fs large>**Step 3:**</fs> Decide on the level of confidence
Line 49: Line 75:
 {{:b:head_first_statistics:pasted:20191203-123432.png}} {{:b:head_first_statistics:pasted:20191203-123432.png}}
  
-$$P(z_{a} < Z < z_{b}) = 0.95$$ +\begin{eqnarray*} 
-$$P(Z < z_{a}) = 0.025$$ +P(z_{a} < Z < z_{b}) 0.95 \\ 
-$$z_{a} = -1.96$$ +P(Z < z_{a}) 0.025 \\ 
-$$P(Z > z_{b}) = 0.025$$ +z_{a} -1.96 \\ 
-$$z_{b} = +1.96$$+P(Z > z_{b}) 0.025 \\ 
 +z_{b} +1.96 \\ 
 + 
 +\end{eqnarray*} 
  
 \begin{eqnarray*} \begin{eqnarray*}
Line 99: Line 129:
   * 따라서 위의 경우는 95%에 해당하는 probability는    * 따라서 위의 경우는 95%에 해당하는 probability는 
     * $P(-2 < z < 2) = .95$     * $P(-2 < z < 2) = .95$
-    * $P(-2 < \dfrac {X - \overline{X}}{sd} < 2) = .95$+    * $P(-2 < \dfrac {\overline{X} - \mu}{sd} < 2) = .95$
     * 이렇게 계산을 하면     * 이렇게 계산을 하면
     * $P(\overline{X} -1 < \mu < \overline{X} + 1) = .95 $     * $P(\overline{X} -1 < \mu < \overline{X} + 1) = .95 $
Line 154: Line 184:
  
 ==== Step 4: Find the confidence limits ==== ==== Step 4: Find the confidence limits ====
-Use degrees of freedom with alpha (p-level). 
 {{:b:head_first_statistics:pasted:20191203-133742.png}} {{:b:head_first_statistics:pasted:20191203-133742.png}}
 +Use degrees of freedom with alpha (p-level)
  
 ===== The t-distribution vs. the normal distribution ===== ===== The t-distribution vs. the normal distribution =====
b/head_first_statistics/constructing_confidence_intervals.1575940793.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki