b:head_first_statistics:estimating_populations_and_samples

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:estimating_populations_and_samples [2025/11/04 22:32] – [Sampling distribution of sample mean] hkimscilb:head_first_statistics:estimating_populations_and_samples [2025/11/04 23:18] (current) – [Exercise] hkimscil
Line 638: Line 638:
  
 <tabbed> <tabbed>
-  * page1 +  * b:head_first_statistics:estimating_populations_and_samples:sampling_distribution_of_means_in_r|code 
-  * sand_box:page2 +  * b:head_first_statistics:estimating_populations_and_samples:sampling_distribution_of_means_in_r_output|output
-  * sand_box:page3+
 </tabbed> </tabbed>
  
Line 692: Line 691:
 ===== Using CLT for the binomial distribution ===== ===== Using CLT for the binomial distribution =====
 $X \sim B(n, p)$ 에서 $\mu = np$, $\sigma^2 = npq$ 이고, $X \sim B(n, p)$ 에서 $\mu = np$, $\sigma^2 = npq$ 이고,
-n이 30이 넘는 조건에서 이항분포가 정상분포를 이룬다고 하므로   +n이 30이 넘는 조건에서 이항분포가 정상분포를 이룬다고 하므로 (하면)  
-$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$에 대입해 보면:  +$\overline{X} \sim N (\mu, \frac{\sigma^2}{n} ) $에 대입해 보면:  
-$$\overline{X} \sim N(np, \; pq) $$+$$\overline{X} \sim N \left(np, \; pq \right) $$
  
 {{:b:head_first_statistics:pasted:20191126-095122.png}} {{:b:head_first_statistics:pasted:20191126-095122.png}}
Line 738: Line 737:
 > pnorm(b/a) > pnorm(b/a)
 [1] 1.053435e-16 [1] 1.053435e-16
- 
 </code> </code>
 +
 +
 ====== Recap ====== ====== Recap ======
 Distribution of **Sample** <fc #ff0000>**P**</fc>roportion<fc #ff0000>**s**</fc>, <fc #ff0000>$Ps$</fc>, Distribution of **Sample** <fc #ff0000>**P**</fc>roportion<fc #ff0000>**s**</fc>, <fc #ff0000>$Ps$</fc>,
b/head_first_statistics/estimating_populations_and_samples.1762295579.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki