b:head_first_statistics:geometric_binomial_and_poisson_distributions
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| b:head_first_statistics:geometric_binomial_and_poisson_distributions [2025/10/06 11:57] – [Bernoulli Distribution] hkimscil | b:head_first_statistics:geometric_binomial_and_poisson_distributions [2025/10/14 23:31] (current) – [e.g.,] hkimscil | ||
|---|---|---|---|
| Line 73: | Line 73: | ||
| ## rather than p * q^(r-1) | ## rather than p * q^(r-1) | ||
| dgeom(x = 0:n, prob = p) | dgeom(x = 0:n, prob = p) | ||
| - | hist(dgeom(x = 0:n, prob = p)) | + | # hist(dgeom(x = 0:n, prob = p)) |
| + | barplot(dgeom(x=0: | ||
| </ | </ | ||
| Line 87: | Line 88: | ||
| [29] 0.0003868563 0.0003094850 | [29] 0.0003868563 0.0003094850 | ||
| > | > | ||
| - | > hist(dgeom(x = 0:n, prob = p)) | + | > # hist(dgeom(x = 0:n, prob = p)) |
| + | > barplot(dgeom(x=0: | ||
| </ | </ | ||
| - | {{: | + | < |
| + | {{: | ||
| r번 시도한 이후, 그 이후 어디서든지 간에 성공을 얻을 확률 | r번 시도한 이후, 그 이후 어디서든지 간에 성공을 얻을 확률 | ||
| $$ P(X > r) = q^{r} $$ | $$ P(X > r) = q^{r} $$ | ||
| Line 737: | Line 739: | ||
| $Var(X) = \displaystyle \frac{q}{p^{2}}$ | $Var(X) = \displaystyle \frac{q}{p^{2}}$ | ||
| + | < | ||
| + | > p <- .4 | ||
| + | > q <- 1-p | ||
| + | > | ||
| + | > p*q^(2-1) | ||
| + | [1] 0.24 | ||
| + | > dgeom(1, p) | ||
| + | [1] 0.24 | ||
| + | > | ||
| + | > 1-q^4 | ||
| + | [1] 0.8704 | ||
| + | > dgeom(0:3, p) | ||
| + | [1] 0.4000 0.2400 0.1440 0.0864 | ||
| + | > sum(dgeom(0: | ||
| + | [1] 0.8704 | ||
| + | > pgeom(3, p) | ||
| + | [1] 0.8704 | ||
| + | > | ||
| + | > q^4 | ||
| + | [1] 0.1296 | ||
| + | > 1-sum(dgeom(0: | ||
| + | [1] 0.1296 | ||
| + | > 1-pgeom(3, p) | ||
| + | [1] 0.1296 | ||
| + | > pgeom(3, p, lower.tail = F) | ||
| + | [1] 0.1296 | ||
| + | > | ||
| + | > 1/p | ||
| + | [1] 2.5 | ||
| + | > | ||
| + | > q/p^2 | ||
| + | [1] 3.75 | ||
| + | > | ||
| + | </ | ||
| Line 787: | Line 822: | ||
| \begin{eqnarray*} | \begin{eqnarray*} | ||
| P(X = r) & = & _{n}C_{r} \cdot p^{r} \cdot q^{n-r} \;\;\; \text{Where, | P(X = r) & = & _{n}C_{r} \cdot p^{r} \cdot q^{n-r} \;\;\; \text{Where, | ||
| - | _{n}C_{r} & = & \frac {n!}{r!(n-r)!} | + | \displaystyle |
| + | \text{c.f., | ||
| + | \displaystyle _{n} P_{r} & = & \displaystyle \dfrac {n!} {(n-r)!} \\ | ||
| \end{eqnarray*} | \end{eqnarray*} | ||
| + | |||
| + | see [[: | ||
| + | |||
| p = 각 시행에서 성공할 확률 | p = 각 시행에서 성공할 확률 | ||
| Line 877: | Line 917: | ||
| c <- choose(n, | c <- choose(n, | ||
| ans1 <- c*(p^r)*(q^(n-r)) | ans1 <- c*(p^r)*(q^(n-r)) | ||
| - | ans1 | + | ans1 # or |
| + | |||
| + | choose(n, r)*(p^r)*(q^(n-r)) | ||
| + | |||
| + | dbinom(r, n, p) | ||
| + | # dbinom(2, 5, 1/4) | ||
| </ | </ | ||
| + | |||
| < | < | ||
| > p <- .25 | > p <- .25 | ||
| Line 888: | Line 935: | ||
| > ans <- c*(p^r)*(q^(n-r)) | > ans <- c*(p^r)*(q^(n-r)) | ||
| > ans | > ans | ||
| + | [1] 0.2636719 | ||
| + | > | ||
| + | > choose(n, r)*(p^r)*(q^(n-r)) | ||
| + | [1] 0.2636719 | ||
| + | > | ||
| + | > dbinom(r, n, p) | ||
| [1] 0.2636719 | [1] 0.2636719 | ||
| > | > | ||
| Line 903: | Line 956: | ||
| ans2 <- c*(p^r)*(q^(n-r)) | ans2 <- c*(p^r)*(q^(n-r)) | ||
| ans2 | ans2 | ||
| + | |||
| + | choose(n, r)*(p^r)*(q^(n-r)) | ||
| + | |||
| + | dbinom(r, n, p) | ||
| + | |||
| </ | </ | ||
| < | < | ||
| Line 914: | Line 972: | ||
| > ans2 | > ans2 | ||
| [1] 0.08789062 | [1] 0.08789062 | ||
| + | > | ||
| + | > choose(n, | ||
| + | [1] 0.08789062 | ||
| + | > | ||
| + | > dbinom(r, n, p) | ||
| + | [1] 0.08789063 | ||
| + | > | ||
| > | > | ||
| </ | </ | ||
| - | Ans 3. | + | Ans 3. 중요 |
| < | < | ||
| - | ans1 + ans2 | + | ans1 + ans2 |
| + | dbinom(2, 5, .25) + dbinom(3, 5, .25) | ||
| + | dbinom(2:3, 5, .25) | ||
| + | sum(dbinom(2: | ||
| + | pbinom(3, 5, .25) - pbinom(1, 5, .25) | ||
| </ | </ | ||
| - | < | + | < |
| + | > ans1 + ans2 | ||
| [1] 0.3515625 | [1] 0.3515625 | ||
| + | > dbinom(2, 5, .25) + dbinom(3, 5, .25) | ||
| + | [1] 0.3515625 | ||
| + | > dbinom(2:3, 5, .25) | ||
| + | [1] 0.26367187 0.08789063 | ||
| + | > sum(dbinom(2: | ||
| + | [1] 0.3515625 | ||
| + | > pbinom(3, 5, .25) - pbinom(1, 5, .25) | ||
| + | [1] 0.3515625 | ||
| + | > | ||
| </ | </ | ||
| Line 979: | Line 1058: | ||
| > </ | > </ | ||
| - | ===== Another way to see E(X) and Var(X) ===== | + | Q. 한 문제를 맞힐 확률은 1/4 이다. 총 여섯 문제가 있다고 할 때, 0에서 5 문제를 맞힐 확률은? dbinom을 이용해서 구하시오. |
| + | < | ||
| + | p <- 1/4 | ||
| + | q <- 1-p | ||
| + | n <- 6 | ||
| + | pbinom(5, n, p) | ||
| + | 1 - dbinom(6, n, p) | ||
| + | sum(dbinom(0: | ||
| + | </ | ||
| + | < | ||
| + | > p <- 1/4 | ||
| + | > q <- 1-p | ||
| + | > n <- 6 | ||
| + | > pbinom(5, n, p) | ||
| + | [1] 0.9997559 | ||
| + | > 1 - dbinom(6, n, p) | ||
| + | [1] 0.9997559 | ||
| + | > sum(dbinom(0: | ||
| + | [1] 0.9997559 | ||
| + | > | ||
| + | </ | ||
| - | ==== Expectation and Variance value ==== | + | 중요 . . . . |
| - | \begin{eqnarray*} | + | < |
| - | E(X) & = & \sum_{x}xP(x) \\ | + | # http:// |
| - | & = & 0*p^{0}(1-p)^{1-0} + 1*p^{1}(1-p)^{1-1} \\ | + | # ################################################################## |
| - | & = & p \\ | + | # |
| - | \\ | + | p <- 1/4 |
| - | Var(X) & = & E((X-\mu)^{2}) \\ | + | q <- 1 - p |
| - | & = & \sum_{x}(x-\mu)^2P(x) \\ | + | n <- 5 |
| - | \end{eqnarray*} | + | r <- 0 |
| - | 그런데 | + | all.dens <- dbinom(0:n, n, p) |
| - | \begin{eqnarray*} | + | all.dens |
| - | E((X-\mu)^{2}) & = & E(X^2) - (E(X))^2 \\ | + | sum(all.dens) |
| - | \end{eqnarray*} | + | |
| - | 위에서 | + | choose(5,0)*p^0*(q^(5-0)) |
| - | \begin{eqnarray*} | + | choose(5,1)*p^1*(q^(5-1)) |
| - | E(X^{2}) & = & \sum x^2 p(x) \\ | + | choose(5,2)*p^2*(q^(5-2)) |
| - | & = & 0^2*p^0(1-p)^{1-0} + 1^2*p^1(1-p)^{1-1} \\ | + | choose(5, |
| - | & = & p | + | choose(5, |
| - | \end{eqnarray*} | + | choose(5,5)*p^5*(q^(5-5)) |
| + | all.dens | ||
| - | zero squared probability of zero occurring | + | choose(5, |
| - | one squared prob of one occurring | + | |
| + | choose(5, | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | sum(all.dens) | ||
| + | # | ||
| + | (p+q)^n | ||
| + | # note that n = whatever, (p+q)^n = 1 | ||
| - | 또한 $E(X) = p $ 임을 알고 있음 | + | </ |
| - | \begin{eqnarray*} | + | |
| - | Var(X) & = & E((X-\mu)^{2}) \\ | + | |
| - | & = & E(X^2) - (E(X))^2 \\ | + | |
| - | & = & p - p^2 \\ | + | |
| - | & = & p(1-p) | + | |
| - | \end{eqnarray*} | + | |
| - | 위는 First Head Statistics 에서 $X \sim (1, 0.25)$ 에서 E(X)와 Var(X)를 구한 후 (각각, p와 pq), X가 n가지가 있다고 확장하여 np와 npq를 구한 것과 같다. 즉, 교재는 Bernoulli distribution을 이야기(설명)하지 않고, 활용하여 binomial distribution의 기대값과 분산값을 구해낸 것이다. | + | < |
| - | + | > # http:// | |
| - | ==== extension of Bernoulli Distribution ==== | + | > # ################################################################## |
| - | + | > # | |
| - | $E(U_{i}) = p$ and $Var(U_{i}) = p(1-p)$ or $Var(U_{i}) = p \cdot q$ | + | > p <- 1/4 |
| - | + | > q <- 1 - p | |
| - | $$X = U_{1} + . . . . + U_{n}$$ | + | > n <- 5 |
| - | \begin{eqnarray*} | + | > r <- 0 |
| - | E(X) & = & E(U_{1} + . . . + U_{n}) \\ | + | > all.dens <- dbinom(0:n, n, p) |
| - | & = & E(U_{1}) + . . . + E(U_{n}) \\ | + | > all.dens |
| - | & = & p + . . . + p \\ | + | [1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 |
| - | & = & np | + | [5] 0.0146484375 0.0009765625 |
| - | \end{eqnarray*} | + | > sum(all.dens) |
| - | + | [1] 1 | |
| - | \begin{eqnarray*} | + | > |
| - | Var(X) & = & Var(U_{1} + . . . + U_{n}) \\ | + | > choose(5,0)*p^0*(q^(5-0)) |
| - | & = & Var(U_{1}) + . . . + Var(U_{n}) \\ | + | [1] 0.2373047 |
| - | & = & p(1-p) + . . . + p(1-p) \\ | + | > choose(5,1)*p^1*(q^(5-1)) |
| - | & = & np(1-p) \\ | + | [1] 0.3955078 |
| - | & = & npq | + | > choose(5,2)*p^2*(q^(5-2)) |
| - | \end{eqnarray*} | + | [1] 0.2636719 |
| - | + | > choose(5,3)*p^3*(q^(5-3)) | |
| - | + | [1] 0.08789062 | |
| - | ===== From a scratch (Proof of Binomial Expected Value) ===== | + | > choose(5,4)*p^4*(q^(5-4)) |
| + | [1] 0.01464844 | ||
| + | > choose(5,5)*p^5*(q^(5-5)) | ||
| + | [1] 0.0009765625 | ||
| + | > all.dens | ||
| + | [1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 | ||
| + | [5] 0.0146484375 0.0009765625 | ||
| + | > | ||
| + | > choose(5,0)*p^0*(q^(5-0)) + | ||
| + | + | ||
| + | + choose(5,2)*p^2*(q^(5-2)) + | ||
| + | + choose(5,3)*p^3*(q^(5-3)) + | ||
| + | + choose(5, | ||
| + | + | ||
| + | [1] 1 | ||
| + | > sum(all.dens) | ||
| + | [1] 1 | ||
| + | > # | ||
| + | > (p+q)^n | ||
| + | [1] 1 | ||
| + | > # note that n = whatever, (p+q)^n = 1 | ||
| + | > | ||
| + | </ | ||
| + | ===== Proof of Binomial Expected Value and Variance | ||
| [[:Mean and Variance of Binomial Distribution|이항분포에서의 기댓값과 분산에 대한 수학적 증명]], Mathematical proof of Binomial Distribution Expected value and Variance | [[:Mean and Variance of Binomial Distribution|이항분포에서의 기댓값과 분산에 대한 수학적 증명]], Mathematical proof of Binomial Distribution Expected value and Variance | ||
| ====== Poisson Distribution ====== | ====== Poisson Distribution ====== | ||
b/head_first_statistics/geometric_binomial_and_poisson_distributions.1759751837.txt.gz · Last modified: by hkimscil
