b:head_first_statistics:geometric_binomial_and_poisson_distributions
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| b:head_first_statistics:geometric_binomial_and_poisson_distributions [2025/10/06 11:59] – [From a scratch (Proof of Binomial Expected Value)] hkimscil | b:head_first_statistics:geometric_binomial_and_poisson_distributions [2025/10/14 23:31] (current) – [e.g.,] hkimscil | ||
|---|---|---|---|
| Line 73: | Line 73: | ||
| ## rather than p * q^(r-1) | ## rather than p * q^(r-1) | ||
| dgeom(x = 0:n, prob = p) | dgeom(x = 0:n, prob = p) | ||
| - | hist(dgeom(x = 0:n, prob = p)) | + | # hist(dgeom(x = 0:n, prob = p)) |
| + | barplot(dgeom(x=0: | ||
| </ | </ | ||
| Line 87: | Line 88: | ||
| [29] 0.0003868563 0.0003094850 | [29] 0.0003868563 0.0003094850 | ||
| > | > | ||
| - | > hist(dgeom(x = 0:n, prob = p)) | + | > # hist(dgeom(x = 0:n, prob = p)) |
| + | > barplot(dgeom(x=0: | ||
| </ | </ | ||
| - | {{: | + | < |
| + | {{: | ||
| r번 시도한 이후, 그 이후 어디서든지 간에 성공을 얻을 확률 | r번 시도한 이후, 그 이후 어디서든지 간에 성공을 얻을 확률 | ||
| $$ P(X > r) = q^{r} $$ | $$ P(X > r) = q^{r} $$ | ||
| Line 737: | Line 739: | ||
| $Var(X) = \displaystyle \frac{q}{p^{2}}$ | $Var(X) = \displaystyle \frac{q}{p^{2}}$ | ||
| + | < | ||
| + | > p <- .4 | ||
| + | > q <- 1-p | ||
| + | > | ||
| + | > p*q^(2-1) | ||
| + | [1] 0.24 | ||
| + | > dgeom(1, p) | ||
| + | [1] 0.24 | ||
| + | > | ||
| + | > 1-q^4 | ||
| + | [1] 0.8704 | ||
| + | > dgeom(0:3, p) | ||
| + | [1] 0.4000 0.2400 0.1440 0.0864 | ||
| + | > sum(dgeom(0: | ||
| + | [1] 0.8704 | ||
| + | > pgeom(3, p) | ||
| + | [1] 0.8704 | ||
| + | > | ||
| + | > q^4 | ||
| + | [1] 0.1296 | ||
| + | > 1-sum(dgeom(0: | ||
| + | [1] 0.1296 | ||
| + | > 1-pgeom(3, p) | ||
| + | [1] 0.1296 | ||
| + | > pgeom(3, p, lower.tail = F) | ||
| + | [1] 0.1296 | ||
| + | > | ||
| + | > 1/p | ||
| + | [1] 2.5 | ||
| + | > | ||
| + | > q/p^2 | ||
| + | [1] 3.75 | ||
| + | > | ||
| + | </ | ||
| Line 787: | Line 822: | ||
| \begin{eqnarray*} | \begin{eqnarray*} | ||
| P(X = r) & = & _{n}C_{r} \cdot p^{r} \cdot q^{n-r} \;\;\; \text{Where, | P(X = r) & = & _{n}C_{r} \cdot p^{r} \cdot q^{n-r} \;\;\; \text{Where, | ||
| - | _{n}C_{r} & = & \frac {n!}{r!(n-r)!} | + | \displaystyle |
| + | \text{c.f., | ||
| + | \displaystyle _{n} P_{r} & = & \displaystyle \dfrac {n!} {(n-r)!} \\ | ||
| \end{eqnarray*} | \end{eqnarray*} | ||
| + | |||
| + | see [[: | ||
| + | |||
| p = 각 시행에서 성공할 확률 | p = 각 시행에서 성공할 확률 | ||
| Line 877: | Line 917: | ||
| c <- choose(n, | c <- choose(n, | ||
| ans1 <- c*(p^r)*(q^(n-r)) | ans1 <- c*(p^r)*(q^(n-r)) | ||
| - | ans1 | + | ans1 # or |
| + | |||
| + | choose(n, r)*(p^r)*(q^(n-r)) | ||
| + | |||
| + | dbinom(r, n, p) | ||
| + | # dbinom(2, 5, 1/4) | ||
| </ | </ | ||
| + | |||
| < | < | ||
| > p <- .25 | > p <- .25 | ||
| Line 888: | Line 935: | ||
| > ans <- c*(p^r)*(q^(n-r)) | > ans <- c*(p^r)*(q^(n-r)) | ||
| > ans | > ans | ||
| + | [1] 0.2636719 | ||
| + | > | ||
| + | > choose(n, r)*(p^r)*(q^(n-r)) | ||
| + | [1] 0.2636719 | ||
| + | > | ||
| + | > dbinom(r, n, p) | ||
| [1] 0.2636719 | [1] 0.2636719 | ||
| > | > | ||
| Line 903: | Line 956: | ||
| ans2 <- c*(p^r)*(q^(n-r)) | ans2 <- c*(p^r)*(q^(n-r)) | ||
| ans2 | ans2 | ||
| + | |||
| + | choose(n, r)*(p^r)*(q^(n-r)) | ||
| + | |||
| + | dbinom(r, n, p) | ||
| + | |||
| </ | </ | ||
| < | < | ||
| Line 914: | Line 972: | ||
| > ans2 | > ans2 | ||
| [1] 0.08789062 | [1] 0.08789062 | ||
| + | > | ||
| + | > choose(n, | ||
| + | [1] 0.08789062 | ||
| + | > | ||
| + | > dbinom(r, n, p) | ||
| + | [1] 0.08789063 | ||
| + | > | ||
| > | > | ||
| </ | </ | ||
| - | Ans 3. | + | Ans 3. 중요 |
| < | < | ||
| - | ans1 + ans2 | + | ans1 + ans2 |
| + | dbinom(2, 5, .25) + dbinom(3, 5, .25) | ||
| + | dbinom(2:3, 5, .25) | ||
| + | sum(dbinom(2: | ||
| + | pbinom(3, 5, .25) - pbinom(1, 5, .25) | ||
| </ | </ | ||
| - | < | + | < |
| + | > ans1 + ans2 | ||
| [1] 0.3515625 | [1] 0.3515625 | ||
| + | > dbinom(2, 5, .25) + dbinom(3, 5, .25) | ||
| + | [1] 0.3515625 | ||
| + | > dbinom(2:3, 5, .25) | ||
| + | [1] 0.26367187 0.08789063 | ||
| + | > sum(dbinom(2: | ||
| + | [1] 0.3515625 | ||
| + | > pbinom(3, 5, .25) - pbinom(1, 5, .25) | ||
| + | [1] 0.3515625 | ||
| + | > | ||
| </ | </ | ||
| Line 979: | Line 1058: | ||
| > </ | > </ | ||
| + | Q. 한 문제를 맞힐 확률은 1/4 이다. 총 여섯 문제가 있다고 할 때, 0에서 5 문제를 맞힐 확률은? dbinom을 이용해서 구하시오. | ||
| + | < | ||
| + | p <- 1/4 | ||
| + | q <- 1-p | ||
| + | n <- 6 | ||
| + | pbinom(5, n, p) | ||
| + | 1 - dbinom(6, n, p) | ||
| + | sum(dbinom(0: | ||
| + | </ | ||
| + | < | ||
| + | > p <- 1/4 | ||
| + | > q <- 1-p | ||
| + | > n <- 6 | ||
| + | > pbinom(5, n, p) | ||
| + | [1] 0.9997559 | ||
| + | > 1 - dbinom(6, n, p) | ||
| + | [1] 0.9997559 | ||
| + | > sum(dbinom(0: | ||
| + | [1] 0.9997559 | ||
| + | > | ||
| + | </ | ||
| + | 중요 . . . . | ||
| + | < | ||
| + | # http:// | ||
| + | # ################################################################## | ||
| + | # | ||
| + | p <- 1/4 | ||
| + | q <- 1 - p | ||
| + | n <- 5 | ||
| + | r <- 0 | ||
| + | all.dens <- dbinom(0:n, n, p) | ||
| + | all.dens | ||
| + | sum(all.dens) | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | all.dens | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | choose(5, | ||
| + | sum(all.dens) | ||
| + | # | ||
| + | (p+q)^n | ||
| + | # note that n = whatever, (p+q)^n = 1 | ||
| + | |||
| + | </ | ||
| + | |||
| + | < | ||
| + | > # http:// | ||
| + | > # ################################################################## | ||
| + | > # | ||
| + | > p <- 1/4 | ||
| + | > q <- 1 - p | ||
| + | > n <- 5 | ||
| + | > r <- 0 | ||
| + | > all.dens <- dbinom(0:n, n, p) | ||
| + | > all.dens | ||
| + | [1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 | ||
| + | [5] 0.0146484375 0.0009765625 | ||
| + | > sum(all.dens) | ||
| + | [1] 1 | ||
| + | > | ||
| + | > choose(5, | ||
| + | [1] 0.2373047 | ||
| + | > choose(5, | ||
| + | [1] 0.3955078 | ||
| + | > choose(5, | ||
| + | [1] 0.2636719 | ||
| + | > choose(5, | ||
| + | [1] 0.08789062 | ||
| + | > choose(5, | ||
| + | [1] 0.01464844 | ||
| + | > choose(5, | ||
| + | [1] 0.0009765625 | ||
| + | > all.dens | ||
| + | [1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 | ||
| + | [5] 0.0146484375 0.0009765625 | ||
| + | > | ||
| + | > choose(5, | ||
| + | + | ||
| + | + | ||
| + | + | ||
| + | + | ||
| + | + | ||
| + | [1] 1 | ||
| + | > sum(all.dens) | ||
| + | [1] 1 | ||
| + | > # | ||
| + | > (p+q)^n | ||
| + | [1] 1 | ||
| + | > # note that n = whatever, (p+q)^n = 1 | ||
| + | > | ||
| + | </ | ||
| ===== Proof of Binomial Expected Value and Variance ===== | ===== Proof of Binomial Expected Value and Variance ===== | ||
| [[:Mean and Variance of Binomial Distribution|이항분포에서의 기댓값과 분산에 대한 수학적 증명]], Mathematical proof of Binomial Distribution Expected value and Variance | [[:Mean and Variance of Binomial Distribution|이항분포에서의 기댓값과 분산에 대한 수학적 증명]], Mathematical proof of Binomial Distribution Expected value and Variance | ||
b/head_first_statistics/geometric_binomial_and_poisson_distributions.1759751952.txt.gz · Last modified: by hkimscil
