c:ms:2017:schedule:week03
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| c:ms:2017:schedule:week03 [2017/04/04 23:36] – hkimscil | c:ms:2017:schedule:week03 [2022/05/15 02:25] (current) – [Central Tendency] hkimscil | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | ====== Week 3 내용 ====== | + | ㄹ====== Week 3 내용 ====== |
| ===== SPSS ===== | ===== SPSS ===== | ||
| < | < | ||
| Line 107: | Line 107: | ||
| * [[:Standard Deviation]] 표준편차 | * [[:Standard Deviation]] 표준편차 | ||
| - | * Variance calculation formula | + | * Variance calculation formula |
| - | * {{anchor: | + | * $ \displaystyle S_x^2 = \displaystyle \frac {\Sigma X^2 - \frac{(\Sigma X)^2}{N} } {N-1} $ |
| - | * $\displaystyle \sigma_x^2 = \displaystyle \frac {\Sigma X^2 - \frac{(\Sigma X)^2}{N} } {N} = \displaystyle \frac {\Sigma X^2}{N} - \frac {(\Sigma X)^2}{N^2} = \displaystyle \frac {\Sigma X^2}{N} - \bigg(\frac {\Sigma X}{N}\bigg)^2 = \displaystyle \frac {\Sigma X^2}{N} - \mu^2 | + | * $ \displaystyle \sigma_x^2 = \displaystyle \frac {\Sigma X^2 - \frac{(\Sigma X)^2}{N} } {N} = \displaystyle \frac {\Sigma X^2}{N} - \frac {(\Sigma X)^2}{N^2} = \displaystyle \frac {\Sigma X^2}{N} - \bigg(\frac {\Sigma X}{N}\bigg)^2 = \displaystyle \frac {\Sigma X^2}{N} - \mu^2 $ |
| * [[:Degrees of Freedom]] N-1 | * [[:Degrees of Freedom]] N-1 | ||
| Line 135: | Line 135: | ||
| 와 같다. | 와 같다. | ||
| - | 이렇게 얻은 샘플들(k 개의)의 평균인 $A_k$ 는, | + | 이렇게 얻은 샘플들(k 개의)의 평균인 $ A_k $ 는, |
| - | $$A_k = \displaystyle \frac{(X_1 + X_2 + . . . + X_k)}{k} = \frac{S_{k}}{k} $$ | + | $$ A_k = \displaystyle \frac{(X_1 + X_2 + . . . + X_k)}{k} = \frac{S_{k}}{k} $$ |
| 라고 할 수 있다. | 라고 할 수 있다. | ||
| Line 143: | Line 143: | ||
| 이때, | 이때, | ||
| - | $$ | + | $$ |
| \begin{align*} | \begin{align*} | ||
| E[S_k] & = E[X_1 + X_2 + . . . +X_k] \\ | E[S_k] & = E[X_1 + X_2 + . . . +X_k] \\ | ||
| Line 151: | Line 151: | ||
| $$ | $$ | ||
| - | $$ | + | $$ |
| \begin{align*} | \begin{align*} | ||
| Var[S_k] & = Var[X_1 + X_2 + . . . +X_k] \\ | Var[S_k] & = Var[X_1 + X_2 + . . . +X_k] \\ | ||
| Line 161: | Line 161: | ||
| 이다. | 이다. | ||
| - | 그렇다면, | + | 그렇다면, |
| - | $$ | + | $$ |
| \begin{align*} | \begin{align*} | ||
| E[A_k] & = E[\frac{S_k}{k}] \\ | E[A_k] & = E[\frac{S_k}{k}] \\ | ||
c/ms/2017/schedule/week03.1491348970.txt.gz · Last modified: by hkimscil
