c:ms:2025:schedule:w13.lecture.note
This is an old revision of the document!
MR
# multiple regression: a simple e.g.
#
#
rm(list=ls())
d <- read.csv("http://commres.net/wiki/_media/regression01-bankaccount.csv")
d
colnames(d) <- c("y", "x1", "x2")
d
# y = 통장갯수
# x1 = 인컴
# x2 = 부양가족수
lm.y.x1 <- lm(y ~ x1, data=d)
summary(lm.y.x1)
anova(lm.y.x1)
lm.y.x2 <- lm(y ~ x2, data=d)
summary(lm.y.x2)
anova(lm.y.x2)
lm.y.x1x2 <- lm(y ~ x1+x2, data=d)
summary(lm.y.x1x2)
anova(lm.y.x1x2)
lm.y.x1x2$coefficient
# y.hat = 6.399103 + (0.01184145)*x1 + (−0.54472725)*x2
a <- lm.y.x1x2$coefficient[1]
b1 <- lm.y.x1x2$coefficient[2]
b2 <- lm.y.x1x2$coefficient[3]
a
b1
b2
y.pred <- a + (b1 * x1) + (b2 * x2)
y.pred
# or
y.pred2 <- predict(lm.y.x1x2)
head(y.pred == y.pred2)
y.real <- y
y.real
y.mean <- mean(y)
y.mean
res <- y.real - y.pred
reg <- y.pred - y.mean
y.mean
# remember y is sum of res + reg + y.mean
y2 <- res + reg + y.mean
y==y2
ss.res <- sum(res^2)
ss.reg <- sum(reg^2)
ss.tot <- var(y) * (length(y)-1)
ss.tot
ss.res
ss.reg
ss.res+ss.reg
k <- 3 # # of parameters a, b1, b2
df.tot <- length(y)-1
df.reg <- k - 1
df.res <- df.tot - df.reg
ms.reg <- ss.reg/df.reg
ms.res <- ss.res/df.res
ms.reg
ms.res
f.val <- ms.reg/ms.res
f.val
p.val <- pf(f.val, df.reg, df.res, lower.tail = F)
p.val
# double check
summary(lm.y.x1x2)
anova(lm.y.x1x2)
# note on 2 t-tests in summary
# anova에서의 x1, x2에 대한 테스트와
# lm에서의 x1, x2에 대한 테스트 (t-test) 간에
# 차이가 있음에 주의 (x1, x2에 대한 Pr 값이
# 다름). 그 이유는
# t-tests는 __pr__ 테스트로 테스트를
# (spr, zero_order_r 테스트가 아님) 하고
# anova test는 x1 전체에 대한 테스트 하고
# x2는 x1에 대한 테스트 외에 나머지를 가지고
# 테스트하기 때문에 그러함
# beta coefficient (standardized b)
# beta <- b * (sd(x)/sd(y))
beta1 <- b1 * (sd(x1)/sd(y))
beta2 <- b2 * (sd(x2)/sd(y))
beta1
beta2
# install.packages("lm.beta")
library(lm.beta)
lm.beta(lm.y.x1x2)
#######################################################
# partial correlation coefficient and pr2
# x2's explanation?
# understand with diagrams first
# then calculate with r
lm.tmp.1 <- lm(x2~x1, data=d)
res.x2.x1 <- lm.tmp.1$residuals
lm.tmp.2 <- lm(y~x1, data=d)
res.y.x1 <- lm.tmp.2$residuals
lm.tmp.3 <- lm(res.y.x1 ~ res.x2.x1, data=d)
summary(lm.tmp.3)
# install.packages("ppcor")
library(ppcor)
partial.r <- pcor.test(y, x2, x1)
partial.r
str(partial.r)
summary(lm.tmp.3)
summary(lm.tmp.3)$r.square
partial.r$estimate^2
# x1's own explanation?
lm.tmp.4 <- lm(x1~x2, data=d)
res.x1.x2 <- lm.tmp.4$residuals
lm.tmp.5 <- lm(y~x2, data=d)
res.y.x2 <- lm.tmp.5$residuals
lm.tmp.6 <- lm(res.y.x2 ~ res.x1.x2, data=d)
summary(lm.tmp.6)
partial.r <- pcor.test(y, x1, x2)
str(partial.r)
partial.r$estimate # this is partial correlation, not pr^2
# in order to get pr2, you should ^2
partial.r$estimate^2
#######################################################
#
# semipartial correlation coefficient and spr2
#
spr.1 <- spcor.test(y,x2,x1)
spr.2 <- spcor.test(y,x1,x2)
spr.1
spr.2
spr.1$estimate^2
spr.2$estimate^2
lm.tmp.7 <- lm(y ~ res.x2.x1, data = d)
summary(lm.tmp.7)
spr.1$estimate^2
lm.tmp.8 <- lm(y~res.x1.x2, data = d)
summary(lm.tmp.8)
spr.2$estimate^2
#######################################################
# get the common area that explain the y variable
# 1.
summary(lm.y.x2)
all.x2 <- summary(lm.y.x2)$r.squared
sp.x2 <- spr.1$estimate^2
all.x2
sp.x2
cma.1 <- all.x2 - sp.x2
cma.1
# 2.
summary(lm.y.x1)
all.x1 <- summary(lm.y.x1)$r.squared
sp.x1 <- spr.2$estimate^2
all.x1
sp.x1
cma.2 <- all.x1 - sp.x1
cma.2
# OR 3.
summary(lm.y.x1x2)
r2.y.x1x2 <- summary(lm.y.x1x2)$r.square
r2.y.x1x2
sp.x1
sp.x2
cma.3 <- r2.y.x1x2 - (sp.x1 + sp.x2)
cma.3
cma.1
cma.2
cma.3
# OR 애초에 simple regression과 multiple
# regression에서 얻은 R2을 가지고
# 공통설명력을 알아볼 수도 있었다.
r2.x1 <- summary(lm.y.x1)$r.square
r2.x2 <- summary(lm.y.x2)$r.square
r2.x1x2 <- summary(lm.y.x1x2)$r.square
r2.x1 + r2.x2 - r2.x1x2
# Note that sorting out unique and common
# explanation area is only possible with
# semi-partial correlation determinant
# NOT partial correlation determinant
# because only semi-partial correlation
# shares the same denominator (as total
# y).
#############################################
#############################################
# scratch
#############################################
lm.x1x2 <- lm(x1~x2, data = d)
lm.x2x1 <- lm(x2~x1, data = d)
summary(lm.y.x1)
summary(lm.y.x2)
summary(lm.y.x1x2)
resx1 <- lm.x1x2$residuals
regx1 <- lm.x1x2$fitted.values-mean(x1)
lm.y.resx1 <- lm(y~resx1, data = d)
summary(lm.y.resx1) # 0.3189 no sig.
lm.y.regx1 <- lm(y~regx1, data = d)
summary(lm.y.regx1) # 0.4793, p = .027;
# but, this is 100% correlated part with x2
summary(lm.y.x2)
cor(regx1,x2) # 1
cor(resx1,x2) # 0
resx2 <- lm.x2x1$residuals
regx2 <- lm.x2x1$fitted.values-mean(x2)
lm.y.resx2 <- lm(y~resx2, data = d)
summary(lm.y.resx2)
lm.y.regx2 <- lm(y~regx2, data = d)
summary(lm.y.regx2)
summary(lm.y.x1)
cor(regx2,x1) # 1 because of this
cor(resx2,x1) # 0
# the below two are the same
summary(lm(y~x1, data = d))
summary(lm(y~regx2, data = d))
summary(lm(y~x2, data = d)) # 0.4793
summary(lm(y~x1, data = d)) # 0.6311
summary(lm(y~resx1, data = d)) # 0.3189
summary(lm(y~x1+x2, data = d))
summary(lm(y~x1, data = d))$r.square
summary(lm(y~resx1, data = d))$r.square
summary(lm(y~x1, data = d))$r.square - summary(lm(y~resx1, data = d))$r.square
sqrt(summary(lm(y~resx1, data = d))$r.square)
spcor.test(y,x1,x2)
sqrt(summary(lm(y~x1, data = d))$r.square
- summary(lm(y~resx1, data = d))$r.square)
(summary(lm(x1~x2, data =d))$r.square)
(summary(lm(y~x1, data = d))$r.square - summary(lm(y~resx1, data = d))$r.square)
a <- summary(lm(y~resx1, data = d))$r.square
c <- summary(lm(y~x1, data = d))$r.square
b <- summary(lm(y~regx1, data = d))$r.square
summary(lm(y~resx1, data = d))
summary(lm(y~resx2, data = d))
summary(lm(y~x1, data = d))
summary(lm(y~x2, data = d))
cor(regx2, x1)
cor(regx1, x2)
ab <- summary(lm(y~x1, data = d))$r.square
a <- summary(lm(y~resx1, data = d))$r.square
ab
a
ab-a
bc <- summary(lm(y~x2, data = d))$r.square
c <- summary(lm(y~resx2, data = d))$r.square
bc
c
bc-c
ab-a
abc <- summary(lm(y~x1+x2, data = d))$r.square
abc
a
c
bc
a+(bc-c)+c
a+bc
ab+c
summary(lm(y~regx2+regx1, data = d))
summary(lm(y~x1+x2, data = d))
summary(lm(y~resx1+resx2, data = d))
summary(lm(y~resx1, data =d))
summary(lm(y~resx2, data =d))
cor(resx1,resx2)
cor(x1,x2)
spcor.test(y,resx1,resx2)$estimate^2
spcor.test(y,resx2,resx1)$estimate^2
cor(y,x1)^2
cor(y,x2)^2
cor(y,resx1)^2
cor(y,resx2)^2
spcor.test(y,x1,x2)$estimate^2
spcor.test(y,x2,x1)$estimate^2
##############################################
# install.packages("lavann")
library(lavaan)
specmod <- "
# path c
# identifying path c (prime) by putting c*
y ~ c*x2
# path a
x1 ~ a*x2
# path b
y ~ b*x1
# indirect effect (a*b): Sobel test (Delta Method)
# 간접효과 a path x b path 를 구해서 얻음
# sobel test 라 부름
ab := a*b
"
# Fit/estimate the model
fitmod <- sem(specmod, data=d)
# summarize the model
summary(fitmod, fit.measures=TRUE, rsquare=T)
summary(lm(x2~x1, data = d))
summary(lm(y~resx2, data = d))
summary(lm(y~x1, data = d))
summary(lm(y~x2, data =d))
#############################################
# e.g. 2
#############################################
d.yyk <- read.csv("http://commres.net/wiki/_media/d.yyk.csv")
d.yyk
d.yyk <- subset(d.yyk, select = -c(1))
d.yyk
attach(d.yyk)
lm.happiness.bmistress <- lm(happiness ~ bmi + stress, data=d.yyk)
summary(lm.happiness.bmistress)
anova(lm.happiness.bmistress)
plot(d.yyk)
lm.happiness.bmi <- lm(happiness ~ bmi, data=d.yyk)
summary(lm.happiness.bmi)
anova(lm.happiness.bmi)
lm.happiness.stress <- lm(happiness ~ stress, data = d.yyk)
summary(lm.happiness.stress)
anova(lm.happiness.stress)
# 공통부분을 찾기
# methd. 1
ab <- summary(lm.happiness.bmi)$r.square
bc <- summary(lm.happiness.stress)$r.square
abc <- summary(lm.happiness.bmistress)$r.square
b <- ab+bc-abc
b
# spcor
# spcor method
spcor.test(happiness,bmi,stress)
a <- spcor.test(happiness,bmi,stress)$estimate^2
spcor.test(happiness,stress,bmi)
c <- spcor.test(happiness,stress,bmi)$estimate^2
abc <- summary(lm.happiness.bmistress)$r.square
abc-a-c
# tidious one
# omitt
# bmi --> stress --> happiness
summary(lm.happiness.bmi)
summary(lm.happiness.stress)
summary(lm.happiness.bmistress)
lm.bmi.stress <- lm(bmi~stress, data = d.yyk)
res.lm.bmi.stress <- lm.bmi.stress$residuals
lm.happiness.res.lm.bmi.stress <- lm(happiness~res.lm.bmi.stress)
summary(lm.happiness.res.lm.bmi.stress)
lm.stress.bmi <- lm(stress~bmi, data = d.yyk)
reg.lm.stress.bmi <- lm.stress.bmi$fitted.values - mean(stress)
lm.happiness.reg.lm.stress.bmi <- lm(happiness~reg.lm.stress.bmi)
summary(lm.happiness.reg.lm.stress.bmi)
summary(lm.happiness.stress)
a <- summary(lm.happiness.res.lm.bmi.stress)$r.square
b <- summary(lm.happiness.reg.lm.stress.bmi)$r.square
c <- summary(lm.happiness.stress)$r.square
a
b
c
a+b
lm.stress.bmi <- lm(stress~bmi, data = d.yyk)
lm.bmi.stress <- lm(bmi~stress, data = d.yyk)
summary(lm.stress.bmi)
# stress.hat = a + b * bmi
stress.hat <- -1.40167 + (0.16787 * bmi)
stress.hat
reg.stress
summary(lm.bmi.stress)
reg.bmi
reg.stress <- lm.stress.bmi$fitted.values
reg.bmi <- lm.bmi.stress$fitted.values
reg.stress
reg.bmi
d.yyk
lm.tmp <- lm(reg.stress~reg.bmi)
lm.tmp2 <- lm(reg.bmi~reg.stress)
summary(lm.tmp)
summary(lm.tmp2)
sqrt(summary(lm.tmp)$r.square)
summary(lm.stress.bmi)
summary(lm.bmi.stress)
summary(lm(happiness~stress, data = d.yyk))
summary(lm(happiness~reg.bmi, data = d.yyk))
summary(lm(happiness~bmi, data=d.yyk))
summary(lm(happiness~reg.stress, data=d.yyk))
plot(tmp.a, tmp.b)
plot(tmp.b, tmp.a)
head(d.yyk)
str(d.yyk)
d.yyk
#########################
output
c/ms/2025/schedule/w13.lecture.note.1748822885.txt.gz · Last modified: by hkimscil
