c:ms:2025:w07_anova_note
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| c:ms:2025:w07_anova_note [2025/04/10 06:50] – [R square or Eta square] hkimscil | c:ms:2025:w07_anova_note [2025/04/16 01:40] (current) – [R square: output] hkimscil | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ====== ANOVA in R ====== | ====== ANOVA in R ====== | ||
| + | 이 문서는 http:// | ||
| + | 다시 만든 문서입니다. http:// | ||
| + | 세 그룹 간의 차이를 보는 것이고 이 문서는 4그룹 간의 차이를 보는 | ||
| + | 문서입니다. | ||
| < | < | ||
| # | # | ||
| Line 17: | Line 21: | ||
| mean.d <- 22 | mean.d <- 22 | ||
| - | A <- rnorm2(na, mean.a, sqrt(1160/(na-1))) | + | A <- rnorm2(na, mean.a, sqrt(900/(na-1))) |
| - | B <- rnorm2(nb, mean.b, sqrt(1000/(nb-1))) | + | B <- rnorm2(nb, mean.b, sqrt(900/(nb-1))) |
| - | C <- rnorm2(nc, mean.c, sqrt(1000/(nc-1))) | + | C <- rnorm2(nc, mean.c, sqrt(900/(nc-1))) |
| - | D <- rnorm2(nd, mean.d, sqrt(1000/(nd-1))) | + | D <- rnorm2(nd, mean.d, sqrt(900/(nd-1))) |
| # A combined group with group A and B | # A combined group with group A and B | ||
| Line 258: | Line 262: | ||
| > mean.a <- 26 | > mean.a <- 26 | ||
| > mean.b <- 25 | > mean.b <- 25 | ||
| - | > mean.c <- 22 | + | > mean.c <- 23 |
| - | > mean.d <- 20 | + | > mean.d <- 22 |
| > | > | ||
| - | > A <- rnorm2(na, mean.a, sqrt(1160/(na-1))) | + | > A <- rnorm2(na, mean.a, sqrt(900/(na-1))) |
| - | > B <- rnorm2(nb, mean.b, sqrt(1000/(nb-1))) | + | > B <- rnorm2(nb, mean.b, sqrt(900/(nb-1))) |
| - | > C <- rnorm2(nc, mean.c, sqrt(1000/(nc-1))) | + | > C <- rnorm2(nc, mean.c, sqrt(900/(nc-1))) |
| - | > D <- rnorm2(nd, mean.d, sqrt(1000/(nd-1))) | + | > D <- rnorm2(nd, mean.d, sqrt(900/(nd-1))) |
| > | > | ||
| > # A combined group with group A and B | > # A combined group with group A and B | ||
| Line 272: | Line 276: | ||
| > A | > A | ||
| [,1] | [,1] | ||
| - | [1,] 24.15936 | + | [1,] 24.37871 |
| - | [2,] 30.80932 | + | [2,] 30.23619 |
| - | | + | |
| - | | + | |
| - | [5,] 28.97978 | + | [5,] 28.62468 |
| - | | + | |
| - | | + | |
| - | [8,] 25.77399 | + | [8,] 25.80092 |
| - | | + | |
| - | [10,] 24.93735 | + | [10,] 25.06399 |
| - | [11,] 30.61240 | + | [11,] 30.06274 |
| - | [12,] 20.61063 | + | [12,] 21.25288 |
| - | [13,] 37.43502 | + | [13,] 36.07231 |
| - | [14,] 15.52399 | + | [14,] 16.77241 |
| - | [15,] 24.83574 | + | [15,] 24.97448 |
| - | [16,] 25.16385 | + | [16,] 25.26349 |
| - | [17,] 20.19498 | + | [17,] 20.88676 |
| - | [18,] 27.06992 | + | [18,] 26.94242 |
| - | [19,] 20.43785 | + | [19,] 21.10069 |
| - | [20,] 11.10716 | + | [20,] 12.88194 |
| - | [21,] 25.38778 | + | [21,] 25.46073 |
| - | [22,] 31.99065 | + | [22,] 31.27674 |
| - | [23,] 24.59883 | + | [23,] 24.76580 |
| - | [24,] 15.54592 | + | [24,] 16.79173 |
| - | [25,] 32.26250 | + | [25,] 31.51620 |
| - | [26,] 15.95114 | + | [26,] 17.14866 |
| - | [27,] 30.16291 | + | [27,] 29.66682 |
| - | [28,] 25.72414 | + | [28,] 25.75701 |
| - | [29,] 30.16421 | + | [29,] 29.66796 |
| - | [30,] 30.39809 | + | [30,] 29.87397 |
| attr(," | attr(," | ||
| [1] -0.08287722 | [1] -0.08287722 | ||
| Line 308: | Line 312: | ||
| > B | > B | ||
| [,1] | [,1] | ||
| - | [1,] 30.92777 | + | [1,] 30.62357 |
| - | [2,] 27.40269 | + | [2,] 27.27939 |
| - | [3,] 31.57423 | + | [3,] 31.23686 |
| - | | + | |
| - | [5,] 32.61602 | + | [5,] 32.22519 |
| - | [6,] 21.65799 | + | [6,] 21.82949 |
| - | [7,] 26.76631 | + | [7,] 26.67567 |
| - | | + | |
| - | [9,] 16.23555 | + | [9,] 16.68531 |
| - | [10,] 28.37195 | + | [10,] 28.19891 |
| - | [11,] 28.56653 | + | [11,] 28.38350 |
| - | [12,] 30.14509 | + | [12,] 29.88106 |
| - | [13,] 12.52765 | + | [13,] 13.16769 |
| - | [14,] 23.17424 | + | [14,] 23.26793 |
| - | [15,] 19.47689 | + | [15,] 19.76032 |
| - | [16,] 28.11125 | + | [16,] 27.95159 |
| - | [17,] 29.06156 | + | [17,] 28.85313 |
| - | [18,] 21.76270 | + | [18,] 21.92882 |
| - | [19,] 24.14405 | + | [19,] 24.18798 |
| - | [20,] 17.31020 | + | [20,] 17.70481 |
| - | [21,] 19.22003 | + | [21,] 19.51664 |
| - | [22,] 24.23347 | + | [22,] 24.27280 |
| - | [23,] 29.11289 | + | [23,] 28.90183 |
| - | [24,] 17.80809 | + | [24,] 18.17715 |
| - | [25,] 30.09268 | + | [25,] 29.83134 |
| - | [26,] 19.78715 | + | [26,] 20.05465 |
| - | [27,] 26.75141 | + | [27,] 26.66153 |
| - | [28,] 32.27229 | + | [28,] 31.89910 |
| - | [29,] 32.52368 | + | [29,] 32.13759 |
| - | [30,] 23.35537 | + | [30,] 23.43977 |
| attr(," | attr(," | ||
| [1] -0.1405676 | [1] -0.1405676 | ||
| Line 344: | Line 348: | ||
| > C | > C | ||
| [,1] | [,1] | ||
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | [10,] 21.02997 | + | [10,] 22.07975 |
| - | [11,] 30.39517 | + | [11,] 30.96436 |
| - | [12,] 31.04547 | + | [12,] 31.58129 |
| - | [13,] 28.28695 | + | [13,] 28.96433 |
| - | [14,] 21.01354 | + | [14,] 22.06416 |
| - | [15,] 10.72282 | + | [15,] 12.30153 |
| - | [16,] 15.34118 | + | [16,] 16.68289 |
| - | [17,] 23.25979 | + | [17,] 24.19514 |
| - | [18,] 13.91989 | + | [18,] 15.33454 |
| - | [19,] 22.28969 | + | [19,] 23.27483 |
| - | [20,] 21.17085 | + | [20,] 22.21340 |
| - | [21,] 32.41776 | + | [21,] 32.88316 |
| - | [22,] 28.04180 | + | [22,] 28.73176 |
| - | [23,] 18.45008 | + | [23,] 19.63225 |
| - | [24,] 18.25799 | + | [24,] 19.45001 |
| - | [25,] 11.25474 | + | [25,] 12.80615 |
| - | [26,] 24.25413 | + | [26,] 25.13846 |
| - | [27,] 21.50399 | + | [27,] 22.52944 |
| - | [28,] 29.43868 | + | [28,] 30.05695 |
| - | [29,] 25.75134 | + | [29,] 26.55883 |
| - | [30,] 30.64723 | + | [30,] 31.20348 |
| attr(," | attr(," | ||
| [1] 0.08931913 | [1] 0.08931913 | ||
| Line 380: | Line 384: | ||
| > D | > D | ||
| [,1] | [,1] | ||
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | | + | |
| - | [10,] 14.513907 | + | [10,] 16.795435 |
| - | [11,] 21.084269 | + | [11,] 23.028628 |
| - | [12,] 15.862551 | + | [12,] 18.074871 |
| - | [13,] 32.407055 | + | [13,] 33.770366 |
| - | [14,] 26.575540 | + | [14,] 28.238105 |
| - | [15,] 23.989868 | + | [15,] 25.785121 |
| - | [16,] 18.058006 | + | [16,] 20.157663 |
| - | [17,] 19.989914 | + | [17,] 21.990432 |
| - | [18, | + | [18, |
| - | [19,] 16.624780 | + | [19,] 18.797986 |
| - | [20,] 29.690645 | + | [20,] 31.193353 |
| - | [21,] 16.009971 | + | [21,] 18.214726 |
| - | [22,] 19.173433 | + | [22,] 21.215850 |
| - | [23,] 18.504309 | + | [23,] 20.581063 |
| - | [24,] 29.182495 | + | [24,] 30.711279 |
| - | [25,] 24.122752 | + | [25,] 25.911186 |
| - | [26,] 14.773496 | + | [26,] 17.041703 |
| - | [27,] 15.629022 | + | [27,] 17.853327 |
| - | [28,] 14.417493 | + | [28,] 16.703969 |
| - | [29,] 15.869201 | + | [29,] 18.081180 |
| - | [30,] 25.412177 | + | [30,] 27.134442 |
| attr(," | attr(," | ||
| [1] 0.0894333 | [1] 0.0894333 | ||
| Line 418: | Line 422: | ||
| > head(dat) | > head(dat) | ||
| values ind | values ind | ||
| - | 1 24.15936 A | + | 1 24.37871 A |
| - | 2 30.80932 A | + | 2 30.23619 A |
| - | 3 21.51824 A | + | 3 22.05233 A |
| - | 4 28.24999 A | + | 4 27.98186 A |
| - | 5 28.97978 A | + | 5 28.62468 A |
| - | 6 35.51391 A | + | 6 34.38014 A |
| > colnames(dat)[1] <- " | > colnames(dat)[1] <- " | ||
| > colnames(dat)[2] <- " | > colnames(dat)[2] <- " | ||
| > head(dat) | > head(dat) | ||
| values group | values group | ||
| - | 1 24.15936 A | + | 1 24.37871 A |
| - | 2 30.80932 A | + | 2 30.23619 A |
| - | 3 21.51824 A | + | 3 22.05233 A |
| - | 4 28.24999 A | + | 4 27.98186 A |
| - | 5 28.97978 A | + | 5 28.62468 A |
| - | 6 35.51391 A | + | 6 34.38014 A |
| > | > | ||
| > mean.total <- mean(dat$values) | > mean.total <- mean(dat$values) | ||
| Line 447: | Line 451: | ||
| > | > | ||
| > mean.total | > mean.total | ||
| - | [1] 23.25 | + | [1] 24 |
| > var.total | > var.total | ||
| - | [1] 40.69328 | + | [1] 32.77311 |
| > ms.total | > ms.total | ||
| - | [1] 40.69328 | + | [1] 32.77311 |
| > df.total | > df.total | ||
| [1] 119 | [1] 119 | ||
| > ss.total | > ss.total | ||
| - | [1] 4842.5 | + | [1] 3900 |
| > ss.total.check | > ss.total.check | ||
| - | [1] 4842.5 | + | [1] 3900 |
| > | > | ||
| > # Now for each group | > # Now for each group | ||
| Line 469: | Line 473: | ||
| [1] 25 | [1] 25 | ||
| > mean.c | > mean.c | ||
| + | [1] 23 | ||
| + | > mean.d | ||
| [1] 22 | [1] 22 | ||
| - | > mean.d | ||
| - | [1] 20 | ||
| > | > | ||
| > # 그룹 간의 차이에서 나타나는 분산 | > # 그룹 간의 차이에서 나타나는 분산 | ||
| Line 491: | Line 495: | ||
| > | > | ||
| > length(A) * ((mean.total - mean.a)^2) | > length(A) * ((mean.total - mean.a)^2) | ||
| - | [1] 226.875 | + | [1] 120 |
| > length(B) * ((mean.total - mean.b)^2) | > length(B) * ((mean.total - mean.b)^2) | ||
| - | [1] 91.875 | + | [1] 30 |
| > length(C) * ((mean.total - mean.c)^2) | > length(C) * ((mean.total - mean.c)^2) | ||
| - | [1] 46.875 | + | [1] 30 |
| > length(D) * ((mean.total - mean.d)^2) | > length(D) * ((mean.total - mean.d)^2) | ||
| - | [1] 316.875 | + | [1] 120 |
| > | > | ||
| > | > | ||
| Line 507: | Line 511: | ||
| > | > | ||
| > ss.between | > ss.between | ||
| - | [1] 682.5 | + | [1] 300 |
| > # df between group은 연구에 사용된 | > # df between group은 연구에 사용된 | ||
| > # 그룹의 숫자에서 1을 뺀 숫자 | > # 그룹의 숫자에서 1을 뺀 숫자 | ||
| Line 557: | Line 561: | ||
| > # 이 값을 출력해 본다 | > # 이 값을 출력해 본다 | ||
| > f.calculated | > f.calculated | ||
| - | | + | [,1] |
| - | [1,] 6.34375 | + | [1,] 3.222222 |
| > | > | ||
| > # 컴퓨터 계산이 쉬워지기 전에는 아래처럼 0.5 level | > # 컴퓨터 계산이 쉬워지기 전에는 아래처럼 0.5 level | ||
| Line 565: | Line 569: | ||
| [1] 2.682809 | [1] 2.682809 | ||
| > f.calculated | > f.calculated | ||
| - | | + | [,1] |
| - | [1,] 6.34375 | + | [1,] 3.222222 |
| > # 위에서 f.calculated > qf값이므로 | > # 위에서 f.calculated > qf값이므로 | ||
| > # f.calculated 값으로 영가설을 부정하고 | > # f.calculated 값으로 영가설을 부정하고 | ||
| Line 582: | Line 586: | ||
| > f.calculated.pvalue <- 1-pf(f.calculated, | > f.calculated.pvalue <- 1-pf(f.calculated, | ||
| > f.calculated.pvalue | > f.calculated.pvalue | ||
| - | [,1] | + | [,1] |
| - | [1,] 0.0005078937 | + | [1,] 0.02527283 |
| > f.calculated | > f.calculated | ||
| - | | + | [,1] |
| - | [1,] 6.34375 | + | [1,] 3.222222 |
| > | > | ||
| > # graph 로 이해 | > # graph 로 이해 | ||
| Line 613: | Line 617: | ||
| > | > | ||
| > f.calculated | > f.calculated | ||
| - | | + | [,1] |
| - | [1,] 6.34375 | + | [1,] 3.222222 |
| > f.calculated.pvalue | > f.calculated.pvalue | ||
| - | [,1] | + | [,1] |
| - | [1,] 0.0005078937 | + | [1,] 0.02527283 |
| > 1 - f.calculated.pvalue | > 1 - f.calculated.pvalue | ||
| [,1] | [,1] | ||
| - | [1,] 0.9994921 | + | [1,] 0.9747272 |
| > | > | ||
| > | > | ||
| Line 626: | Line 630: | ||
| > # Now check this | > # Now check this | ||
| > ss.total | > ss.total | ||
| - | [1] 4842.5 | + | [1] 3900 |
| > ss.between | > ss.between | ||
| - | [1] 682.5 | + | [1] 300 |
| > ss.within | > ss.within | ||
| [,1] | [,1] | ||
| - | [1,] 4160 | + | [1,] 3600 |
| > ss.total | > ss.total | ||
| - | [1] 4842.5 | + | [1] 3900 |
| > ss.between + ss.within | > ss.between + ss.within | ||
| - | [,1] | + | [,1] |
| - | [1,] 4842.5 | + | [1,] 3900 |
| > | > | ||
| > # 한편 df는 | > # 한편 df는 | ||
| Line 656: | Line 660: | ||
| > a.res.sum <- summary(a.res) | > a.res.sum <- summary(a.res) | ||
| > a.res.sum | > a.res.sum | ||
| - | Df Sum Sq Mean Sq F value | + | Df Sum Sq Mean Sq F value Pr(> |
| - | group | + | group |
| - | Residuals | + | Residuals |
| --- | --- | ||
| - | Signif. codes: | + | Signif. codes: |
| + | 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | ||
| > # 그러나 정확히 어떤 그룹에서 차이가 나는지는 판단해주지 않음 | > # 그러나 정확히 어떤 그룹에서 차이가 나는지는 판단해주지 않음 | ||
| > pairwise.t.test(dat$values, | > pairwise.t.test(dat$values, | ||
| Line 668: | Line 673: | ||
| data: dat$values and dat$group | data: dat$values and dat$group | ||
| - | A | + | A B |
| - | B 0.51908 - - | + | B 0.4883 - |
| - | C 0.01092 0.05478 - | + | C 0.0392 0.1671 - |
| - | D 0.00017 0.00159 0.19842 | + | D 0.0063 0.0392 0.4883 |
| P value adjustment method: none | P value adjustment method: none | ||
| Line 681: | Line 686: | ||
| data: dat$values and dat$group | data: dat$values and dat$group | ||
| - | A B | + | A |
| - | B 1.0000 - | + | B 1.000 - - |
| - | C 0.0655 0.3287 - | + | C 0.235 1.000 - |
| - | D 0.0010 0.0096 1.0000 | + | D 0.038 0.235 1.000 |
| P value adjustment method: bonferroni | P value adjustment method: bonferroni | ||
| Line 694: | Line 699: | ||
| A | A | ||
| - | B 0.519 - | + | B 0.977 - |
| - | C 0.044 0.164 - | + | C 0.196 0.501 - |
| - | D 0.001 0.008 0.397 | + | D 0.038 0.196 0.977 |
| P value adjustment method: holm | P value adjustment method: holm | ||
| Line 708: | Line 713: | ||
| $group | $group | ||
| - | diff lwr upr p adj | + | diff |
| - | B-A | + | B-A -1 -4.749401 |
| - | C-A -4 | + | C-A -3 -6.749401 |
| - | D-A -6 -10.030484 | + | D-A -4 -7.749401 |
| - | C-B -3 | + | C-B -2 -5.749401 |
| - | D-B -5 | + | D-B -3 -6.749401 |
| - | D-C -2 | + | D-C -1 -4.749401 |
| > | > | ||
| > boxplot(dat$values~dat$group) | > boxplot(dat$values~dat$group) | ||
| > f.calculated | > f.calculated | ||
| - | | + | [,1] |
| - | [1,] 6.34375 | + | [1,] 3.222222 |
| > f.calculated.pvalue | > f.calculated.pvalue | ||
| - | [,1] | + | [,1] |
| - | [1,] 0.0005078937 | + | [1,] 0.02527283 |
| + | > | ||
| > | > | ||
| > # how much IV explains the DV | > # how much IV explains the DV | ||
| Line 730: | Line 736: | ||
| > eta <- r.square | > eta <- r.square | ||
| > eta | > eta | ||
| - | [1] 0.1409396 | + | [1] 0.07692308 |
| > lm.res <- lm(dat$values~dat$group, | > lm.res <- lm(dat$values~dat$group, | ||
| > summary(lm.res) | > summary(lm.res) | ||
| Line 739: | Line 745: | ||
| Residuals: | Residuals: | ||
| | | ||
| - | -14.8928 -4.1826 -0.3859 | + | -13.1181 -3.9308 -0.3568 |
| Coefficients: | Coefficients: | ||
| Estimate Std. Error t value Pr(> | Estimate Std. Error t value Pr(> | ||
| - | (Intercept) | + | (Intercept) |
| - | dat$groupB | + | dat$groupB |
| - | dat$groupC | + | dat$groupC |
| - | dat$groupD | + | dat$groupD |
| --- | --- | ||
| - | Signif. codes: | + | Signif. codes: |
| + | 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | ||
| - | Residual standard error: 5.988 on 116 degrees of freedom | + | Residual standard error: 5.571 on 116 degrees of freedom |
| - | Multiple R-squared: | + | Multiple R-squared: |
| - | F-statistic: | + | F-statistic: |
| > summary(a.res) | > summary(a.res) | ||
| - | Df Sum Sq Mean Sq F value | + | Df Sum Sq Mean Sq F value Pr(> |
| - | group | + | group |
| - | Residuals | + | Residuals |
| --- | --- | ||
| - | Signif. codes: | + | Signif. codes: |
| + | 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | ||
| > | > | ||
| > | > | ||
| - | > | + | ></ |
| - | </ | + | |
| + | {{: | ||
| + | {{: | ||
| + | {{: | ||
| ====== Post hoc test ====== | ====== Post hoc test ====== | ||
| [[:post hoc test]] | [[:post hoc test]] | ||
| Line 822: | Line 832: | ||
| # 이제 위의 점수를 .05 레벨에서 비교할 점수를 찾아 비교한다 | # 이제 위의 점수를 .05 레벨에서 비교할 점수를 찾아 비교한다 | ||
| # qtukey 펑션을 이용한다 | # qtukey 펑션을 이용한다 | ||
| - | t.crit <- qtukey( .95, nmeans = 3, df = 45) | + | t.crit <- qtukey( .95, nmeans = 4, df = 30 * 4) |
| t.crit | t.crit | ||
| Line 927: | Line 937: | ||
| > # 이제 위의 점수를 .05 레벨에서 비교할 점수를 찾아 비교한다 | > # 이제 위의 점수를 .05 레벨에서 비교할 점수를 찾아 비교한다 | ||
| > # qtukey 펑션을 이용한다 | > # qtukey 펑션을 이용한다 | ||
| - | > t.crit <- qtukey( .95, nmeans = 3, df = 45) | + | > t.crit <- qtukey( .95, nmeans = 4, df = 30 * 4) |
| > t.crit | > t.crit | ||
| - | [1] 3.427507 | + | [1] 3.684589 |
| > | > | ||
| > # 혹은 R이 보통 제시한 거꾸로 방법으로 보면 | > # 혹은 R이 보통 제시한 거꾸로 방법으로 보면 | ||
| Line 1018: | Line 1028: | ||
| ===== R square: output ===== | ===== R square: output ===== | ||
| < | < | ||
| - | > ss.tot | + | > ss.total |
| - | [1] 2666 | + | [1] 3900 |
| - | > ss.bet | + | > ss.between |
| - | [1] 416 | + | [1] 300 |
| - | > r.sq <- ss.bet / ss.tot | + | > r.sq <- ss.between |
| > r.sq | > r.sq | ||
| - | [1] 0.156039 | + | [1] 0.07692308 |
| > | > | ||
| > # then . . . . | > # then . . . . | ||
| > | > | ||
| - | > lm.res <- lm(values ~ group, data = comb3) | + | > lm.res <- lm(values ~ group, data = dat) |
| > summary(lm.res) | > summary(lm.res) | ||
| Call: | Call: | ||
| - | lm(formula = values ~ group, data = comb3) | + | lm(formula = values ~ group, data = dat) |
| Residuals: | Residuals: | ||
| - | Min | + | Min 1Q |
| - | -16.020 -2.783 1.476 | + | -13.1181 -3.9308 -0.3568 |
| Coefficients: | Coefficients: | ||
| Estimate Std. Error t value Pr(> | Estimate Std. Error t value Pr(> | ||
| - | (Intercept) | + | (Intercept) |
| - | groupb | + | groupB |
| - | groupc | + | groupC |
| + | groupD | ||
| --- | --- | ||
| - | Signif. codes: | + | Signif. codes: |
| + | 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | ||
| - | Residual standard error: | + | Residual standard error: |
| - | Multiple R-squared: | + | Multiple R-squared: |
| - | F-statistic: | + | F-statistic: |
| > anova(lm.res) | > anova(lm.res) | ||
| Line 1054: | Line 1066: | ||
| Response: values | Response: values | ||
| - | | + | Df Sum Sq Mean Sq F value Pr(> |
| - | group | + | group 3 300 100.000 3.2222 |
| - | Residuals | + | Residuals |
| --- | --- | ||
| - | Signif. codes: | + | Signif. codes: |
| - | > | + | 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 |
| > | > | ||
| + | |||
| </ | </ | ||
c/ms/2025/w07_anova_note.1744267804.txt.gz · Last modified: by hkimscil
