User Tools

Site Tools


note.w02

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
note.w02 [2025/09/12 10:32] – [output] hkimscilnote.w02 [2025/09/18 10:40] (current) – [T-test sum up] hkimscil
Line 23: Line 23:
 sd(p1) sd(p1)
  
-p2 <- rnorm2(N.p, m.p+5, sd.p)+p2 <- rnorm2(N.p, m.p+20, sd.p)
 mean(p2) mean(p2)
 sd(p2) sd(p2)
Line 31: Line 31:
 var(p1) var(p1)
  
 +hist(p1)
 hist(p1, breaks=50, col = rgb(1, 1, 1, 0.5), hist(p1, breaks=50, col = rgb(1, 1, 1, 0.5),
      main = "histogram of p1 and p2",)      main = "histogram of p1 and p2",)
Line 41: Line 41:
 hist(p1, breaks=50, col=rgb(0,.5,.5,.5)) hist(p1, breaks=50, col=rgb(0,.5,.5,.5))
 abline(v=mean(p1),lwd=2) abline(v=mean(p1),lwd=2)
-abline(v=mean(p1)-sd(p1), lwd=2)+abline(v=m.p1-sd.p1, lwd=2)
 abline(v=mean(p1)+sd(p1), lwd=2) abline(v=mean(p1)+sd(p1), lwd=2)
 abline(v=c(m.p1-2*sd.p1, m.p1+2*sd.p1), lwd=2, col='red') abline(v=c(m.p1-2*sd.p1, m.p1+2*sd.p1), lwd=2, col='red')
Line 60: Line 60:
 pnorm(m.p1+3*sd.p1, m.p1, sd.p1) -  pnorm(m.p1+3*sd.p1, m.p1, sd.p1) - 
   pnorm(m.p1-3*sd.p1, m.p1, sd.p1)   pnorm(m.p1-3*sd.p1, m.p1, sd.p1)
 +
 +pnorm(121, 100, 10) - pnorm(85, 100, 10)
  
 m.p1 m.p1
Line 69: Line 71:
 pnorm(1)-pnorm(-1) pnorm(1)-pnorm(-1)
 pnorm(2)-pnorm(-2) pnorm(2)-pnorm(-2)
-pnorm(3)-pnorm(3)+pnorm(3)-pnorm(-3)
  
 1-pnorm(-2)*2 1-pnorm(-2)*2
Line 154: Line 156:
  
 ################################ ################################
-s.size <- 50+s.size <- 10
  
 means.temp <- c() means.temp <- c()
Line 199: Line 201:
  
 se.z <- sqrt(var(p1)/s.size) se.z <- sqrt(var(p1)/s.size)
 +se.z
 se.z <- c(se.z) se.z <- c(se.z)
 se.z se.z
Line 244: Line 247:
 c(hi2, hiz2) c(hi2, hiz2)
 c(hi3, hiz3) c(hi3, hiz3)
- 
  
 hist(means, breaks=50, hist(means, breaks=50,
Line 270: Line 272:
      col = rgb(1, 1, 1, .5))      col = rgb(1, 1, 1, .5))
 abline(v=mean(means), col="black", lwd=3) abline(v=mean(means), col="black", lwd=3)
-abline(v=m.sample.i.got, col='darkgreen', lwd=3)+abline(v=c(lo1, hi1, lo2, hi2, lo3, hi3),  
 +       col=c("darkgreen","darkgreen", "blue", "blue", "orange", "orange"),  
 +       lwd=2) 
 +abline(v=m.sample.i.got, col='red', lwd=3)
  
 # what is the probablity of getting # what is the probablity of getting
Line 301: Line 306:
 sd(means) sd(means)
  
-tmp <- mean(means) - (m.s.from.p2 - mean(means))+m.k <- mean(s.from.p2) 
 +se.k <- sd(s.from.p2)/sqrt(s.size) 
 + 
 + 
 +tmp <- mean(means) - (m.s.from.p2  
 +                    - mean(means))
 tmp  tmp 
  
Line 308: Line 318:
      col = rgb(1, 1, 1, .5))      col = rgb(1, 1, 1, .5))
 abline(v=mean(means), col="black", lwd=3) abline(v=mean(means), col="black", lwd=3)
 +abline(v=c(lo1, hi1, lo2, hi2, lo3, hi3), 
 +       col=c("darkgreen","darkgreen", "blue", "blue", "orange", "orange"), 
 +       lwd=2)
 abline(v=m.s.from.p2, col='blue', lwd=3) abline(v=m.s.from.p2, col='blue', lwd=3)
  
Line 315: Line 328:
 m.s.from.p2 m.s.from.p2
 pnorm(m.s.from.p2, mean(p1), se.z, lower.tail = F) pnorm(m.s.from.p2, mean(p1), se.z, lower.tail = F)
 +pnorm(m.s.from.p2, m.k, se.k, lower.tail = F)
 # then, what is the probabilty of getting  # then, what is the probabilty of getting 
 # greater than m.sample.i.got and # greater than m.sample.i.got and
Line 323: Line 336:
 abline(v=tmp, col='red', lwd=3) abline(v=tmp, col='red', lwd=3)
 2 * pnorm(m.s.from.p2, mean(p1), se.z, lower.tail = F) 2 * pnorm(m.s.from.p2, mean(p1), se.z, lower.tail = F)
 +
 +2 * pnorm(m.s.from.p2, m.k, se.k, lower.tail = F)
 +
  
 se.z se.z
Line 338: Line 354:
 pt(z.cal, 49, lower.tail = F)*2 pt(z.cal, 49, lower.tail = F)*2
 t.test(s.from.p2, mu=mean(p1), var.equal = T) t.test(s.from.p2, mu=mean(p1), var.equal = T)
 +
 +
 +
 </code> </code>
  
 ====== output ====== ====== output ======
 +===== 1 =====
 +
 <WRAP group> <WRAP group>
 <WRAP column half> <WRAP column half>
Line 363: Line 384:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +===== 2 =====
  
 <WRAP group> <WRAP group>
Line 404: Line 426:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +
 +===== 3 =====
  
 <WRAP group> <WRAP group>
Line 441: Line 465:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +
 +===== 4 =====
  
 <WRAP group> <WRAP group>
Line 501: Line 527:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +
 +===== 5 =====
  
 <WRAP group> <WRAP group>
Line 541: Line 569:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +
 +===== 6 =====
  
 <WRAP group> <WRAP group>
Line 611: Line 641:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +
 +===== 7 =====
  
 <WRAP group> <WRAP group>
Line 636: Line 668:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +
 +===== 8 =====
  
 <WRAP group> <WRAP group>
Line 678: Line 712:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +
 +===== 9 =====
  
 <WRAP group> <WRAP group>
Line 736: Line 772:
 <WRAP column half> <WRAP column half>
 ........................................................................... ...........................................................................
 +[[:central limit theorem]]
 +$$\overline{X} \sim \displaystyle \text{N} \left(\mu, \dfrac{\sigma^{2}}{n} \right)$$ 
 +[[:hypothesis testing]]
 +[[:types of error]]
 +[[:r:types of error]]
 +
 </WRAP> </WRAP>
 </WRAP> </WRAP>
  
 +
 +===== 10 =====
 <WRAP group> <WRAP group>
 <WRAP column half> <WRAP column half>
Line 774: Line 818:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +
 +===== 11 =====
  
 <WRAP group> <WRAP group>
Line 807: Line 853:
 </WRAP> </WRAP>
 </WRAP> </WRAP>
 +
 +===== 12 =====
  
 <WRAP group> <WRAP group>
Line 847: Line 895:
 <WRAP column half> <WRAP column half>
 ........................................................................... ...........................................................................
 +{{:pasted:20250915-084136.png}}
 </WRAP> </WRAP>
 </WRAP> </WRAP>
  
 +
 +===== 13 =====
 <WRAP group> <WRAP group>
 <WRAP column half> <WRAP column half>
Line 862: Line 913:
 > m.s.from.p2 <- mean(s.from.p2) > m.s.from.p2 <- mean(s.from.p2)
 > m.s.from.p2 > m.s.from.p2
-[1] 119.0929+[1] 116.0821
  
 > se.s > se.s
-[1] 3.163228+[1] 3.166623
 > se.z > se.z
 [1] 3.162278 [1] 3.162278
 > sd(means) > sd(means)
-[1] 3.163228+[1] 3.166623
  
 > m.k <- mean(s.from.p2) > m.k <- mean(s.from.p2)
Line 876: Line 927:
  
 > tmp <- mean(means) - (m.s.from.p2  > tmp <- mean(means) - (m.s.from.p2 
-                    - mean(means))+                      - mean(means))
 > tmp  > tmp 
-[1] 80.90409+[1] 83.92356
  
 > hist(means, breaks=30,  > hist(means, breaks=30, 
Line 884: Line 935:
 +      col = rgb(1, 1, 1, .5)) +      col = rgb(1, 1, 1, .5))
 > abline(v=mean(means), col="black", lwd=3) > abline(v=mean(means), col="black", lwd=3)
 +> abline(v=c(lo1, hi1, lo2, hi2, lo3, hi3), 
 ++        col=c("darkgreen","darkgreen", "blue", "blue", "orange", "orange"), 
 ++        lwd=2)
 > abline(v=m.s.from.p2, col='blue', lwd=3) > abline(v=m.s.from.p2, col='blue', lwd=3)
  
Line 890: Line 944:
 > # m.sample.i.got? > # m.sample.i.got?
 > m.s.from.p2 > m.s.from.p2
-[1] 119.0929+[1] 116.0821
 > pnorm(m.s.from.p2, mean(p1), se.z, lower.tail = F) > pnorm(m.s.from.p2, mean(p1), se.z, lower.tail = F)
-[1] 7.816511e-10+[1] 1.832221e-07
 > pnorm(m.s.from.p2, m.k, se.k, lower.tail = F) > pnorm(m.s.from.p2, m.k, se.k, lower.tail = F)
 [1] 0.5 [1] 0.5
Line 902: Line 956:
 > abline(v=tmp, col='red', lwd=3) > abline(v=tmp, col='red', lwd=3)
 > 2 * pnorm(m.s.from.p2, mean(p1), se.z, lower.tail = F) > 2 * pnorm(m.s.from.p2, mean(p1), se.z, lower.tail = F)
-[1] 1.563302e-09+[1] 3.664442e-07
  
 > 2 * pnorm(m.s.from.p2, m.k, se.k, lower.tail = F) > 2 * pnorm(m.s.from.p2, m.k, se.k, lower.tail = F)
Line 911: Line 965:
 [1] 3.162278 [1] 3.162278
 > sd(s.from.p2)/sqrt(s.size) > sd(s.from.p2)/sqrt(s.size)
-[1] 3.35771+[1] 3.209216
 > se.z.adjusted <- sqrt(var(s.from.p2)/s.size) > se.z.adjusted <- sqrt(var(s.from.p2)/s.size)
 > se.z.adjusted > se.z.adjusted
-[1] 3.35771+[1] 3.209216
 > 2 * pnorm(m.s.from.p2, mean(p1), se.z.adjusted,  > 2 * pnorm(m.s.from.p2, mean(p1), se.z.adjusted, 
 +           lower.tail = F) +           lower.tail = F)
-[1] 1.298387e-08+[1] 5.408382e-07
  
 > z.cal <- (m.s.from.p2 - mean(p1))/se.z.adjusted > z.cal <- (m.s.from.p2 - mean(p1))/se.z.adjusted
 > z.cal > z.cal
-[1] 5.686277+[1] 5.011228
 > pnorm(z.cal, lower.tail = F)*2 > pnorm(z.cal, lower.tail = F)*2
-[1] 1.298387e-08+[1] 5.408382e-07
  
  
 > pt(z.cal, 49, lower.tail = F)*2 > pt(z.cal, 49, lower.tail = F)*2
-[1] 7.095934e-07+[1] 7.443756e-06
 > t.test(s.from.p2, mu=mean(p1), var.equal = T) > t.test(s.from.p2, mu=mean(p1), var.equal = T)
  
Line 933: Line 987:
  
 data:  s.from.p2 data:  s.from.p2
-t = 5.6863, df = 9, p-value = 0.0002995+t = 5.0112, df = 9, p-value = 0.0007277
 alternative hypothesis: true mean is not equal to 100 alternative hypothesis: true mean is not equal to 100
 95 percent confidence interval: 95 percent confidence interval:
- 111.4972 126.6885+ 108.8224 123.3419
 sample estimates: sample estimates:
 mean of x  mean of x 
- 119.0929  + 116.0821  
- +>
-+
 > >
 </code> </code>
Line 948: Line 1001:
 ........................................................................... ...........................................................................
 {{:pasted:20250912-193249.png}} {{:pasted:20250912-193249.png}}
 +{{:pasted:20250915-083229.png}}
 </WRAP> </WRAP>
 </WRAP> </WRAP>
  
-====== T-test sum up ====== 
-<code> 
- 
-rm(list=ls()) 
-rnorm2 <- function(n,mean,sd){  
-  mean+sd*scale(rnorm(n))  
-} 
-se <- function(sample) { 
-  sd(sample)/sqrt(length(sample)) 
-} 
-ss <- function(x) { 
-  sum((x-mean(x))^2) 
-} 
- 
-N.p <- 1000000 
-m.p <- 100 
-sd.p <- 10 
- 
- 
-p1 <- rnorm2(N.p, m.p, sd.p) 
-mean(p1) 
-sd(p1) 
- 
-p2 <- rnorm2(N.p, m.p+10, sd.p) 
-mean(p2) 
-sd(p2) 
- 
-hist(p1, breaks=50, col = rgb(1, 0, 0, 0.5), 
-     main = "histogram of p1 and p2",) 
-abline(v=mean(p1), col="black", lwd=3) 
-hist(p2, breaks=50, add=TRUE, col = rgb(0, 0, 1, 0.5)) 
-abline(v=mean(p2), col="red", lwd=3) 
- 
-s.size <- 1000 
-s2 <- sample(p2, s.size) 
-mean(s2) 
-sd(s2) 
- 
-se.z <- sqrt(var(p1)/s.size) 
-se.z <- c(se.z) 
-se.z.range <- c(-2*se.z,2*se.z) 
-se.z.range 
- 
-mean(p1)+se.z.range 
-mean(s2) 
- 
-z.cal <- (mean(s2) - mean(p1)) / se.z 
-z.cal 
-pnorm(z.cal, lower.tail = F) * 2 
- 
-z.cal  
- 
-# principles . . .  
-# distribution of sample means  
-iter <- 100000 
-means <- c() 
-for (i in 1:iter) { 
-  m.of.s <- mean(sample(p1, s.size)) 
-  means <- append(means, m.of.s) 
-} 
- 
-hist(means,  
-     xlim = c(mean(means)-3*sd(means), mean(s2)+5),  
-     col = rgb(1, 0, 0, 0.5)) 
-abline(v=mean(p1), col="black", lwd=3) 
-abline(v=mean(s2),  
-       col="blue", lwd=3) 
-lo1 <- mean(p1)-se.z 
-hi1 <- mean(p1)+se.z 
-lo2 <- mean(p1)-2*se.z 
-hi2 <- mean(p1)+2*se.z 
-abline(v=c(lo1, hi1, lo2, hi2),  
-       col=c("green","green", "brown", "brown"),  
-       lwd=2) 
-se.z 
-c(lo2, hi2) 
-pnorm(z.cal, lower.tail = F) * 2 
- 
- 
-# Note that we use sqrt(var(s2)/s.size) 
-# as our se value instread of  
-# sqrt(var(p1)/s.size) 
-# This is a common practice for R 
-# In fact, some z.test (made by someone) 
-# function uses the former rather than 
-# latter. 
- 
-sqrt(var(p1)/s.size) 
-se.z 
- 
-sqrt(var(s2)/s.size) 
-se(s2) 
- 
-t.cal.os <- (mean(s2) - mean(p1))/ se(s2) 
-z.cal <- (mean(s2) - mean(p1))/ se.z 
-t.cal.os 
-z.cal  
- 
-df.s2 <- length(s2)-1 
-df.s2 
-p.t.os <- pt(abs(t.cal.os), df.s2, lower.tail = F) * 2 
-p.t.os 
-t.out <- t.test(s2, mu=mean(p1)) 
- 
-library(BSDA) 
-z.out <- z.test(s2, p1, sigma.x = sd(s2), sigma.y = sd(p1)) 
- 
-z.out$statistic # se.z 대신에 se(s2) 값으로 구한 z 값 
-z.cal # se.z으로 (sqrt(var(p1)/s.size)값) 구한 z 값 
- 
-t.out$statistic # se(s2)를 분모로 하여 구한 t 값 
-t.cal.os # se(s2)를 이용하여 손으로 구한 t 값 
- 
-# But, after all, we use t.test method regardless of  
-# variation 
- 
-hist(means,  
-     xlim = c(mean(means)-3*sd(means), mean(s2)+5),  
-     col = rgb(1, 0, 0, 0.5)) 
-abline(v=mean(p1), col="black", lwd=3) 
-abline(v=mean(s2),  
-       col="blue", lwd=3) 
-lo1 <- mean(p1)-se.z 
-hi1 <- mean(p1)+se.z 
-lo2 <- mean(p1)-2*se.z 
-hi2 <- mean(p1)+2*se.z 
-abline(v=c(lo1, hi1, lo2, hi2),  
-       col=c("green","green", "brown", "brown"),  
-       lwd=2) 
- 
-# difference between black and blue line 
-# divided by 
-# se(s2) (= random difference) 
-# t.value 
-mean(s2) 
-mean(p1) 
-diff <- mean(s2)-mean(p1) 
-diff 
-se(s2) 
-diff/se(s2) 
- 
-t.cal.os 
- 
-######################## 
-# 2 sample t-test 
-######################## 
-# 가정. 아래에서 추출하는 두  
-# 샘플의 모집단의 파라미터를 
-# 모른다.  
-s1 <- sample(p1, s.size) 
-s2 <- sample(p2, s.size) 
- 
-mean(s1) 
-mean(s2) 
-ss(s1) 
-ss(s2) 
-df.s1 <- length(s1)-1 
-df.s2 <- length(s2)-1 
-df.s1 
-df.s2 
- 
-pooled.variance <- (ss(s1)+ss(s2))/(df.s1+df.s2) 
-pooled.variance 
-se.ts <- sqrt((pooled.variance/length(s1))+(pooled.variance/length(s2))) 
-se.ts 
-t.cal.ts <- (mean(s1)-mean(s2))/se.ts 
-t.cal.ts 
-p.val.ts <- pt(abs(t.cal.ts), df=df.s1+df.s2, lower.tail = F) * 2 
-p.val.ts 
- 
-t.test(s1, s2, var.equal = T) 
- 
-se(s1) 
-se(s2) 
- 
-mean(s1)+c(-se(s1)*2, se(s1)*2) 
-mean(s2)+c(-se(s2)*2, se(s2)*2) 
- 
-mean(p1) 
-mean(p2) 
- 
-hist(s1, breaks=50, 
-     col = rgb(1, 0, 0, 0.5)) 
-hist(s2, breaks=50, add=T, col=rgb(0,0,1,1)) 
-abline(v=mean(s1), col="green", lwd=3) 
-# hist(s2, breaks=50, add=TRUE, col = rgb(0, 0, 1, 0.5)) 
-abline(v=mean(s2), col="lightblue", lwd=3) 
- 
-diff <- mean(s1)-mean(s2) 
-se.ts 
-diff/se.ts 
- 
-#### 
-# repeated measure t-test 
-# we can use the above case  
-# pop paramter unknown 
-# two consecutive measurement  
-# for the same sample  
- 
-t1 <- s1 
-t2 <- s2 
-mean(t1) 
-mean(t2) 
-diff.s <- t1 - t2 
-diff.s 
-t.cal.rm <- mean(diff.s)/se(diff.s) 
-t.cal.rm 
-p.val.rm <- pt(abs(t.cal.rm), length(s1)-1, lower.tail = F) * 2 
-p.val.rm 
-t.test(s1, s2, paired = T) 
- 
-# create multiple histogram 
-s.all <- c(s1,s2) 
-mean(s.all) 
-hist(s1, col='grey', breaks=50, xlim=c(50, 150)) 
-hist(s2, col='darkgreen', breaks=50, add=TRUE) 
-abline(v=c(mean(s.all)),  
-       col=c("red"), lwd=3) 
-abline(v=c(mean(s1), mean(s2)),  
-       col=c("black", "green"), lwd=3) 
- 
-comb <- data.frame(s1,s2) 
-dat <- stack(comb) 
-head(dat) 
- 
-m.tot <- mean(s.all) 
-m.s1 <- mean(s1) 
-m.s2 <- mean(s2) 
- 
-ss.tot <- ss(s.all) 
-ss.s1 <- ss(s1) 
-ss.s2 <- ss(s2) 
- 
-df.tot <- length(s.all)-1 
-df.s1 <- length(s1)-1 
-df.s2 <- length(s2)-1 
- 
-ms.tot <- var(s.all) 
-ms.tot 
-ss.tot/df.tot 
- 
-var(s1) 
-ss.s1 / df.s1 
- 
-var(s2) 
-ss.s2 / df.s2 
- 
-ss.b.s1 <- length(s1) * ((m.tot - m.s1)^2) 
-ss.b.s2 <- length(s2) * ((m.tot - m.s1)^2) 
-ss.bet <- ss.b.s1+ss.b.s2 
-ss.bet 
- 
-ss.wit <- ss.s1 + ss.s2 
-ss.wit 
- 
-ss.bet + ss.wit 
-ss.tot 
- 
-library(dplyr) 
-# df.bet <- length(unique(dat)) - 1 
-df.bet <- nlevels(dat$ind) - 1 
-df.wit <- df.s1+df.s2 
-df.bet 
-df.wit 
-df.bet+df.wit 
-df.tot  
- 
-ms.bet <- ss.bet / df.bet 
-ms.wit <- ss.wit / df.wit 
-ms.bet 
-ms.wit 
- 
-f.cal <- ms.bet / ms.wit 
-f.cal 
-pf(f.cal, df.bet, df.wit, lower.tail = F) 
- 
- 
-f.test <-  aov(dat$values~ dat$ind, data = dat) 
-summary(f.test) 
- 
-sqrt(f.cal) 
-t.cal.ts 
- 
-# this is anova after all.  
-</code> 
- 
-====== output ====== 
-<code> 
-> rm(list=ls()) 
-> rnorm2 <- function(n,mean,sd){  
-+   mean+sd*scale(rnorm(n))  
-+ } 
-> se <- function(sample) { 
-+   sd(sample)/sqrt(length(sample)) 
-+ } 
-> ss <- function(x) { 
-+   sum((x-mean(x))^2) 
-+ } 
- 
-> N.p <- 1000000 
-> m.p <- 100 
-> sd.p <- 10 
- 
- 
-> p1 <- rnorm2(N.p, m.p, sd.p) 
-> mean(p1) 
-[1] 100 
-> sd(p1) 
-[1] 10 
- 
-> p2 <- rnorm2(N.p, m.p+10, sd.p) 
-> mean(p2) 
-[1] 110 
-> sd(p2) 
-[1] 10 
- 
-> hist(p1, breaks=50, col = rgb(1, 0, 0, 0.5), 
-+      main = "histogram of p1 and p2",) 
-> abline(v=mean(p1), col="black", lwd=3) 
-> hist(p2, breaks=50, add=TRUE, col = rgb(0, 0, 1, 0.5)) 
-> abline(v=mean(p2), col="red", lwd=3) 
- 
-> s.size <- 1000 
-> s2 <- sample(p2, s.size) 
-> mean(s2) 
-[1] 110.4892 
-> sd(s2) 
-[1] 10.36614 
- 
-> se.z <- sqrt(var(p1)/s.size) 
-> se.z <- c(se.z) 
-> se.z.range <- c(-2*se.z,2*se.z) 
-> se.z.range 
-[1] -0.6324555  0.6324555 
- 
-> mean(p1)+se.z.range 
-[1]  99.36754 100.63246 
-> mean(s2) 
-[1] 110.4892 
- 
-> z.cal <- (mean(s2) - mean(p1)) / se.z 
-> z.cal 
-[1] 33.16976 
-> pnorm(z.cal, lower.tail = F) * 2 
-[1] 2.93954e-241 
- 
-> z.cal  
-[1] 33.16976 
- 
-> # principles . . .  
-> # distribution of sample means  
-> iter <- 100000 
-> means <- c() 
-> for (i in 1:iter) { 
-+   m.of.s <- mean(sample(p1, s.size)) 
-+   means <- append(means, m.of.s) 
-+ } 
- 
-> hist(means,  
-+      xlim = c(mean(means)-3*sd(means), mean(s2)+5),  
-+      col = rgb(1, 0, 0, 0.5)) 
-> abline(v=mean(p1), col="black", lwd=3) 
-> abline(v=mean(s2),  
-+        col="blue", lwd=3) 
-> lo1 <- mean(p1)-se.z 
-> hi1 <- mean(p1)+se.z 
-> lo2 <- mean(p1)-2*se.z 
-> hi2 <- mean(p1)+2*se.z 
-> abline(v=c(lo1, hi1, lo2, hi2),  
-+        col=c("green","green", "brown", "brown"),  
-+        lwd=2) 
-> se.z 
-[1] 0.3162278 
-> c(lo2, hi2) 
-[1]  99.36754 100.63246 
-> pnorm(z.cal, lower.tail = F) * 2 
-[1] 2.93954e-241 
- 
- 
-> # Note that we use sqrt(var(s2)/s.size) 
-> # as our se value instread of  
-> # sqrt(var(p1)/s.size) 
-> # This is a common practice for R 
-> # In fact, some z.test (made by someone) 
-> # function uses the former rather than 
-> # latter. 
- 
-> sqrt(var(p1)/s.size) 
-          [,1] 
-[1,] 0.3162278 
-> se.z 
-[1] 0.3162278 
- 
-> sqrt(var(s2)/s.size) 
-[1] 0.3278061 
-> se(s2) 
-[1] 0.3278061 
- 
-> t.cal.os <- (mean(s2) - mean(p1))/ se(s2) 
-> z.cal <- (mean(s2) - mean(p1))/ se.z 
-> t.cal.os 
-[1] 31.99818 
-> z.cal  
-[1] 33.16976 
- 
-> df.s2 <- length(s2)-1 
-> df.s2 
-[1] 999 
-> p.t.os <- pt(abs(t.cal.os), df.s2, lower.tail = F) * 2 
-> p.t.os 
-[1] 3.162139e-155 
-> t.out <- t.test(s2, mu=mean(p1)) 
- 
-> library(BSDA) 
-필요한 패키지를 로딩중입니다: lattice 
- 
-다음의 패키지를 부착합니다: ‘BSDA’ 
- 
-The following object is masked from ‘package:datasets’: 
- 
-    Orange 
- 
-경고메시지(들):  
-패키지 ‘BSDA’는 R 버전 4.3.3에서 작성되었습니다  
-> z.out <- z.test(s2, p1, sigma.x = sd(s2), sigma.y = sd(p1)) 
- 
-> z.out$statistic # se.z 대신에 se(s2) 값으로 구한 z 값 
-      z  
-31.9833  
-> z.cal # se.z으로 (sqrt(var(p1)/s.size)값) 구한 z 값 
-[1] 33.16976 
- 
-> t.out$statistic # se(s2)를 분모로 하여 구한 t 값 
-        
-31.99818  
-> t.cal.os # se(s2)를 이용하여 손으로 구한 t 값 
-[1] 31.99818 
- 
-> # But, after all, we use t.test method regardless of  
-> # variation 
- 
-> hist(means,  
-+      xlim = c(mean(means)-3*sd(means), mean(s2)+5),  
-+      col = rgb(1, 0, 0, 0.5)) 
-> abline(v=mean(p1), col="black", lwd=3) 
-> abline(v=mean(s2),  
-+        col="blue", lwd=3) 
-> lo1 <- mean(p1)-se.z 
-> hi1 <- mean(p1)+se.z 
-> lo2 <- mean(p1)-2*se.z 
-> hi2 <- mean(p1)+2*se.z 
-> abline(v=c(lo1, hi1, lo2, hi2),  
-+        col=c("green","green", "brown", "brown"),  
-+        lwd=2) 
- 
-> # difference between black and blue line 
-> # divided by 
-> # se(s2) (= random difference) 
-> # t.value 
-> mean(s2) 
-[1] 110.4892 
-> mean(p1) 
-[1] 100 
-> diff <- mean(s2)-mean(p1) 
-> diff 
-[1] 10.4892 
-> se(s2) 
-[1] 0.3278061 
-> diff/se(s2) 
-[1] 31.99818 
- 
-> t.cal.os 
-[1] 31.99818 
- 
-> ######################## 
-> # 2 sample t-test 
-> ######################## 
-> # 가정. 아래에서 추출하는 두  
-> # 샘플의 모집단의 파라미터를 
-> # 모른다.  
-> s1 <- sample(p1, s.size) 
-> s2 <- sample(p2, s.size) 
- 
-> mean(s1) 
-[1] 100.7138 
-> mean(s2) 
-[1] 109.8804 
-> ss(s1) 
-[1] 108288.9 
-> ss(s2) 
-[1] 100751 
-> df.s1 <- length(s1)-1 
-> df.s2 <- length(s2)-1 
-> df.s1 
-[1] 999 
-> df.s2 
-[1] 999 
- 
-> pooled.variance <- (ss(s1)+ss(s2))/(df.s1+df.s2) 
-> pooled.variance 
-[1] 104.6246 
-> se.ts <- sqrt((pooled.variance/length(s1))+(pooled.variance/length(s2))) 
-> se.ts 
-[1] 0.4574376 
-> t.cal.ts <- (mean(s1)-mean(s2))/se.ts 
-> t.cal.ts 
-[1] -20.03892 
-> p.val.ts <- pt(abs(t.cal.ts), df=df.s1+df.s2, lower.tail = F) * 2 
-> p.val.ts 
-[1] 1.522061e-81 
- 
-> t.test(s1, s2, var.equal = T) 
- 
- Two Sample t-test 
- 
-data:  s1 and s2 
-t = -20.039, df = 1998, p-value < 2.2e-16 
-alternative hypothesis: true difference in means is not equal to 0 
-95 percent confidence interval: 
- -10.06366  -8.26945 
-sample estimates: 
-mean of x mean of y  
- 100.7138  109.8804  
- 
- 
-> se(s1) 
-[1] 0.3292374 
-> se(s2) 
-[1] 0.3175719 
- 
-> mean(s1)+c(-se(s1)*2, se(s1)*2) 
-[1] 100.0553 101.3723 
-> mean(s2)+c(-se(s2)*2, se(s2)*2) 
-[1] 109.2452 110.5155 
- 
-> mean(p1) 
-[1] 100 
-> mean(p2) 
-[1] 110 
- 
-> hist(s1, breaks=50, 
-+      col = rgb(1, 0, 0, 0.5)) 
-> hist(s2, breaks=50, add=T, col=rgb(0,0,1,1)) 
-> abline(v=mean(s1), col="green", lwd=3) 
-> # hist(s2, breaks=50, add=TRUE, col = rgb(0, 0, 1, 0.5)) 
-> abline(v=mean(s2), col="lightblue", lwd=3) 
- 
-> diff <- mean(s1)-mean(s2) 
-> se.ts 
-[1] 0.4574376 
-> diff/se.ts 
-[1] -20.03892 
- 
-> #### 
-> # repeated measure t-test 
-> # we can use the above case  
-> # pop paramter unknown 
-> # two consecutive measurement  
-> # for the same sample  
- 
-> t1 <- s1 
-> t2 <- s2 
-> mean(t1) 
-[1] 100.7138 
-> mean(t2) 
-[1] 109.8804 
-> diff.s <- t1 - t2 
-> diff.s 
-   [1] -11.22445947  -3.01532631  -3.47460077 -14.77286374  -9.74734969   2.33544374  -1.53761723 
-   [8]   5.16258644 -40.75608052  -4.94498515  13.05099703  -0.24847628  -6.26581498  -8.14116058 
-  [15]   5.49152742   6.15799638  -4.65589524  -7.93104859 -15.28488198  -5.99182327 -15.35591992 
-  [22]  -1.00704696  18.27285355 -12.09936359  -4.72393289  -4.98301049 -20.95452153   1.62363928 
-  [29] -10.58244069 -21.50608157 -53.61230898  -3.85198479 -42.61929736  -6.80266370 -22.92704580 
-  [36]   3.01745740 -19.37131113 -27.82551902 -10.05485425 -25.12701225 -12.93162558  -7.55706006 
-  [43] -19.16855657  -4.81878797   1.64397602 -28.64658004  16.36241227   8.73170802 -11.56090742 
-  [50]   3.21799642 -39.37233043  -9.96051946 -19.11232333 -34.53077051  -4.85780005  -9.52501389 
-  [57]  -8.28743679 -38.33995044 -50.60884456  -3.43450084  -0.85381393 -13.30971467  10.13049966 
-  [64]   8.65616917 -29.75453733 -25.40674843 -24.98197786 -12.92901371  15.80168803  -8.67599446 
-  [71] -20.50728324 -19.37275012 -23.27866089 -11.74962053 -34.35317908 -26.10460199   8.59009957 
-  [78] -24.79252799   3.09475727 -19.13505970 -11.72561867 -33.79775614  -6.00167910 -25.03263480 
-  [85] -23.66447959  -8.54416282  -6.89905337 -10.45234583 -34.67182776 -37.20205500   6.60270378 
-  [92] -21.22842221 -11.68774036  -8.71535203 -15.55746542   2.88009050  -5.51543509   1.21606420 
-  [99]  19.63435733 -14.40578016 -11.24172079  10.21723258 -23.41564885  27.60247565  -8.28684078 
- [106]  17.72472594  -0.29977586 -14.84142327 -20.25713391 -37.99518419 -27.68545647 -19.78976153 
- [113] -10.23092427   0.40875267 -17.36077213 -24.53979674 -24.18070810 -24.13321556 -17.36615616 
- [120] -31.50478963  -2.47101725 -22.14003910 -33.63875270 -19.91485505  -3.64251563 -30.62407901 
- [127]  -7.91406849  -6.25389594   4.40651820 -19.08031290 -14.01489366 -31.30542657 -27.05443597 
- [134]  -6.60642443   1.29892762 -11.73908399   1.96878666  -7.53666283 -42.78007247  -9.04715952 
- [141]  14.05326537  -6.85724091 -16.02305236 -24.38581030  -9.91759245   4.75488243  -2.83181250 
- [148]  -5.38371023 -19.62202451  -1.55000290 -14.86541899   2.95279749   3.82076747  -3.38868029 
- [155]  -0.65101074  18.42861149 -20.55548459   3.02438240  21.23539589   3.32810800  -9.66847192 
- [162]   2.48687983  -5.40571073  -1.53265391 -12.93542011  19.87564176 -10.69228781  12.80629134 
- [169]   6.51132022 -16.96586244  10.88690774  -0.37382590 -14.69255590 -26.66941722  -3.67854181 
- [176]   6.29443209 -10.77182585 -25.65187453   0.09825251   9.03908176  10.25414786  -0.45340800 
- [183] -38.63379525 -16.58800530 -17.62672134   5.43887886  -4.95532070  -6.46372777  -3.14562140 
- [190] -22.25276559   2.05941880 -44.33676979  -3.34190343 -19.04858920  -8.21990394 -25.53625536 
- [197] -17.21120659  28.96404607   6.25767994  -6.17593254 -34.33503461   6.65350479  11.42897662 
- [204]  -0.83715976 -28.46397824 -40.67262397  -6.01225907 -11.22598108 -10.92756008 -15.45671946 
- [211]  -4.57060131 -27.19860432   5.68618678 -27.70257611 -27.77374648  -5.93312400  -9.37871992 
- [218] -24.41623403  16.94244832 -30.46760860  -4.91996788   2.89031604   5.27074167 -23.91666746 
- [225] -13.27091592  -7.99640540  15.26148582 -26.01138488 -28.57927092 -17.29274303 -17.07704891 
- [232] -11.52528966  -5.50387909  -0.66159232 -11.50347650 -19.90680762 -11.09595230 -11.02710712 
- [239] -13.34969773 -37.98584006  -0.95289265 -15.00431567  -1.22592809   7.40922588  11.45790664 
- [246] -24.07983488   4.54606079  -0.54863357   6.56528626  -4.04491250 -17.13525622 -22.85976576 
- [253] -12.30101864   7.01445235  -6.77058075 -10.69023765 -14.21289974   0.68743488 -22.13964282 
- [260]  -4.93155960  -5.32992121  -9.24699990 -34.21542676 -28.10074867 -14.64483350 -21.94636738 
- [267]   0.57190289 -32.90838279 -23.39341251  -8.52122572   7.61461839 -12.60688433  -8.17161329 
- [274]  -7.73981345  -4.86979671  14.97509924 -17.25493992 -48.85010339  10.16448581  -4.34608694 
- [281]  -4.73924884  19.07076764  -5.23571728 -28.73076387  -1.01530521  -1.14387890  -6.96197277 
- [288] -10.10160879 -11.59352210   5.83294359 -10.03967522  -9.59761019 -15.88867160  -7.13643475 
- [295]  -7.29391701 -31.93027109 -15.56526408  13.22678162 -11.18996097 -25.00719650 -12.64524490 
- [302] -35.18133234  13.41791211 -10.87228845 -31.95732546 -18.32496165 -17.76804212 -14.54640557 
- [309]  21.57859526   8.22556833 -11.51111550  -7.19669828 -28.98417620  -8.16801696  -3.70794736 
- [316]  -6.13751897   8.57292816   0.83289680 -11.25989874  11.25387495 -21.86409747   8.11413189 
- [323] -31.81200194 -12.67414744  -7.24837917  -9.76383734  -9.95068555 -17.43835347 -21.88852882 
- [330]  -7.57724957 -39.97109963 -18.22405067  -3.35304894  -2.01422861  12.65855868  19.68084692 
- [337] -17.60471709   0.17064467  -2.41707219  -8.99719317  -6.91454803   6.10676201  -6.24933210 
- [344] -10.52672545  -8.28580388 -21.74741007 -20.10217608 -27.73408273 -15.76758951 -16.05537057 
- [351]   7.28801425  14.00094463 -32.21492728 -26.60734855   5.34256687  -2.73678515 -11.37626522 
- [358] -23.18199896 -18.58488442 -26.09162223  -8.11379506 -16.24314767  -7.63202196  -7.70819353 
- [365]  15.27344158  -6.89298171 -14.69008686 -10.61871285 -15.97716535   2.04244654 -20.72377059 
- [372]  -3.33710996  -8.70719328   1.11210610  17.29240572   3.03254095  -0.17471362  -0.03964601 
- [379] -37.25886118   1.80635404 -18.13062850 -12.08353080   3.17736630  11.60663212  14.40230421 
- [386] -10.17057116 -11.45984282 -11.29130871 -15.60613249   3.94447987  21.39005539  38.66131508 
- [393] -21.77681110  12.35832123  20.97222557 -30.89221977  26.68094540  13.28471640   5.74956285 
- [400]  -7.60656480  17.47154758   2.14422376 -25.38609321  -7.75483605  12.58051687  -0.12179751 
- [407] -17.52668230   1.92572455  -0.40532799 -11.06357792 -11.11874742 -10.35835894 -18.01080311 
- [414] -14.30821541 -10.88427284   3.35560021 -13.46512417   6.04047559 -14.68666762   1.68951313 
- [421]   4.31329242   7.50742041 -26.79115307 -32.01096580  28.21960400   3.60371811  14.05530287 
- [428] -23.35919604   4.65486577 -42.05164227   5.90447867 -22.06140361 -36.42899364 -37.85288612 
- [435]  -7.63484440  -7.99917501   5.73410720 -17.24124704  25.18142781 -22.27250215   3.31690400 
- [442] -19.75974381  13.54264541 -18.86771849 -37.61540899   1.88862667 -10.85162959 -15.90454635 
- [449]  -2.21038773  -1.64057323  -5.05984647 -11.33623396  -3.23993046  -7.07393112 -12.97757803 
- [456]   2.81189108 -14.48709633 -26.49136729 -27.92148265  -3.32407602 -32.81165304  12.60241883 
- [463] -19.77773032  -7.21862902 -30.05644966 -34.95205067  11.36207603  -1.88732702  -0.76534355 
- [470]  -2.96997060 -26.06871359 -35.94190403  15.37335724 -29.72925340 -16.82830601 -32.14796579 
- [477]  -7.49787668 -18.90903047  -4.95224428 -15.73171387  13.33385011   6.12192173 -12.11076372 
- [484] -18.62856464 -25.58573774 -11.07888550 -16.77332405  -0.02979250   0.28045921   6.30825053 
- [491]   2.66879530 -12.26308670  -3.34380103   0.57984817  -6.07862084  -0.47454107   0.18277721 
- [498]  -1.49326079 -10.71424083 -18.55815468 -12.12523481 -10.32886876   1.21618496 -26.03417587 
- [505]   4.21652961  -7.19317598  -6.49276222 -24.15078462 -16.62200664  18.65907236 -14.55468004 
- [512]  12.03275099  13.63985493   1.94955005   4.24574372  -1.87352631  -9.90476053   4.92904187 
- [519] -27.58434557  -3.22307117 -17.00433045 -24.92647628  -9.86853681  -3.12201969  -3.23781294 
- [526] -44.00039083 -11.40638340 -10.42772214  11.56731373  34.18935566   0.22493781 -21.75192741 
- [533] -27.11548294 -26.69534077  11.86361692 -18.87587506 -19.76960989  -6.72305933 -16.37844743 
- [540]  28.42329924  -9.05042270  -5.94334753   0.80277394 -10.71835822  -7.39049563  -2.78087519 
- [547] -18.87000360  -2.56690042  -2.31189557 -15.13438755   2.47712830  -7.13675100  -0.16789790 
- [554] -17.69850124 -11.92887098  -7.41497303 -12.51272098   8.45361690 -30.63879338 -22.19654933 
- [561]   0.37289814 -27.30901665 -42.04696582 -12.04972054 -20.74642541  -7.29054494 -11.52182026 
- [568]   8.38372199 -18.57905859   7.62453900 -15.52892307  -1.83154260 -16.24286276  -5.74980635 
- [575]   5.80843070   5.89082648 -12.38211486 -30.94945977 -34.27141760 -16.68862227 -12.74228148 
- [582] -12.87197389 -27.14630137 -14.53291112  -8.24059195  -5.93523740   3.67320111 -14.73114416 
- [589]   7.12333661 -20.54493654 -16.23259278  -7.23953837  13.66853283 -13.35719133  -3.19469244 
- [596]  -8.63453073  -4.38937208  -4.25683530  -3.01229288  -9.46716386 -14.49889042  -4.80320886 
- [603]  -5.93786510  -5.58582436 -38.52292640  -7.31871320 -10.10261534   3.55750183  -0.27859803 
- [610]  13.47634673 -29.68104705  -4.28539812   3.67080445  -5.84424964  13.18400307  -7.89086592 
- [617]  -1.33920025  -0.95308433 -29.91743460 -18.66903033 -20.15406028  -0.89348972 -12.41231804 
- [624]   8.08680667 -34.26161156 -33.98947051  -7.80666121 -10.20912967 -28.95896039  -5.89738802 
- [631]   2.32928389 -38.93521867 -15.56868160  -6.70412659  -2.57471692   2.46451660 -12.81558476 
- [638]  19.76309298   2.12194484  24.84734206 -13.55620029 -17.87794609 -19.54477100 -19.73182713 
- [645] -42.02480771 -13.42077241   9.19843679 -15.49829521 -35.16885995 -17.77559877  -2.28384147 
- [652] -17.68303368   6.17812431   0.66249967   5.00542555  -2.26766815 -11.73064973  -6.75727090 
- [659] -19.48957914 -28.88885682 -10.59583907 -32.20537872 -11.95661953 -23.77887711 -23.51551361 
- [666] -17.32443690 -10.86310515  -8.51040349 -27.57610667 -26.85875525  -3.70329222 -20.50863173 
- [673] -12.41671968  -5.15745402 -19.62849573   4.85082387 -29.88557391 -20.24914582 -27.73847105 
- [680]  -0.12605203  -9.20839167 -51.56244236   3.17764075  13.96786787 -12.74398310   6.86534410 
- [687] -21.75000477  14.10169236 -24.69667641 -20.26619614 -11.67028168  -5.14496708 -21.84000650 
- [694] -34.30010114  -4.30214907 -15.81158253  -2.54412477   0.17601622 -22.22290730  -6.51460318 
- [701] -19.46561809   9.62212347  -5.62354822  16.70312068  -7.16879691  -5.77420998  -2.36157455 
- [708] -27.91638644 -12.61381331   7.45329002  -1.78749631  10.24888993  -2.76665687  -6.47189694 
- [715] -20.55376627   1.03372077  -6.75380336 -21.29024889 -16.12342903 -36.81337018   1.75482644 
- [722] -14.38944775  -4.27006397 -10.21581755   1.97016866   1.50969462  32.31451580   3.32233756 
- [729]  -7.85868267   8.83356066  -3.54004596 -17.21481071 -29.58350979 -22.72248706 -27.86169027 
- [736] -20.25705972  -1.67627671 -23.02237081 -20.13752529   6.07661361  -0.84839297  19.31619624 
- [743] -13.32818441  -1.51206927 -16.05469364 -18.19320869  21.19248327 -26.85398142   2.82896396 
- [750]   1.90853566 -10.76451371  -0.16368097  -5.02703204 -23.15483742  -5.12822113  -4.84245502 
- [757] -19.16011286 -13.91801221 -11.66649472  15.04676653 -20.54651422  32.67150526 -11.37626079 
- [764] -14.75337241  -0.46891630 -12.09854921 -10.75658868 -18.03655441  10.95871312  27.68695247 
- [771]  -1.22676076 -15.78897397 -13.68374038  16.98138996 -15.57048042 -17.53983895 -32.33929466 
- [778] -34.01869977  -2.46227514  -6.56500408 -17.04103052 -17.24440339  -6.68381805  -8.43674456 
- [785]  -3.88372407 -29.28134174 -40.86613320 -18.64259952  -2.78880196  11.13938536  14.40875929 
- [792]  -6.52858972 -38.92485161 -23.57441915 -25.59877817  19.51852353 -20.06650023  -4.32313864 
- [799]   4.62056706  -5.18094527  -0.76429848  -2.98392902 -18.50300318 -29.63778693 -23.63235389 
- [806]   5.68017122  14.33220812 -13.31317005 -10.81641168   5.22445430 -35.46250519   1.56327962 
- [813] -14.60867384  10.29147319 -13.28593538   6.63825469 -14.52606348  17.45903705 -38.05095694 
- [820] -13.93270232 -20.21993468  -1.96308711   1.80444271  12.16855255   9.52956342 -14.88194384 
- [827] -29.04193544 -24.04102844 -14.01878071  -2.03269506   2.67151865  -5.20017572 -41.14943705 
- [834]   8.96661691  28.12018815  -2.37196235 -13.46669223 -15.34687871 -19.92157033  16.10283716 
- [841]   5.71060454  -1.87210810  17.82634786   6.46299261 -23.56325888  -9.31538158  13.08900119 
- [848]   8.81863004 -16.87823373   2.57469446 -19.81326240  -1.08297141 -15.99656489 -12.78570251 
- [855]  -8.53943328 -37.51286174  -5.80934175  29.94051347 -12.29916397  -0.84174744  -5.89053659 
- [862] -30.93593593  -6.24638974   6.71567898   0.33777483  -6.43007412  -6.10032287 -18.90969351 
- [869]   6.22885535   2.29565188 -25.72416278  -4.48305502  -5.77922453 -13.55585021 -23.84825362 
- [876] -14.65449874 -25.51320775 -35.73124575   2.27482359 -23.67720440   7.67981459 -30.63388731 
- [883]  -2.12532769  -6.06248123 -14.67967251   2.92695069 -32.55242308 -19.80182640 -12.70340060 
- [890]  -0.36473422 -24.33804299 -33.53505272   6.38777505  -7.65940679 -45.22813407  -5.91512961 
- [897]   4.82722129 -32.55034135  -5.64002137  -1.85377692 -24.82298659 -11.91899896   5.90226019 
- [904]  -6.67799556 -18.39929702 -14.70709248  20.16465530  -2.37785503 -19.40544013 -43.64259489 
- [911]  -4.80310727 -20.67267587  -6.12960286  14.76051916 -24.94995895 -21.55367734   3.51347606 
- [918] -21.82098554   4.68892318  22.32281743   3.01554647 -14.22391287 -28.44488042   0.32000549 
- [925] -26.29548705 -28.39677088  -6.06084948  -2.71491964   1.69227810  -8.71016310  -6.16547536 
- [932] -11.67413566 -11.59680714   9.40984647  -9.93669428 -17.84745893   2.04601218 -19.80104095 
- [939]  -0.49341925   6.14760676 -22.21183010  13.50485022  -5.22057307 -17.82539558 -24.46518962 
- [946]  13.48666595 -11.80484500 -20.85173165 -31.08852302  -4.75860232 -36.88054918   2.98370161 
- [953]  -0.37405972  17.58168372   0.48972051   9.79846880 -45.38152568 -25.01098967  -0.10839639 
- [960]   0.14270290  10.28628008  21.54101027 -17.49673999 -12.24470665 -11.99999059 -24.05651849 
- [967] -18.49661342 -12.30226946  -6.43942483 -23.07187196  -1.29013458 -15.53084359   0.86159642 
- [974] -11.26368153  -4.91450784  -9.73711163 -14.70304307  -4.39913543 -21.76712550  -7.49898974 
- [981] -25.17421015 -10.35273557  -9.64669400 -14.19622872 -13.91668603 -24.13258717 -15.08519499 
- [988]   1.35746984  10.40157841  -2.47480562 -35.30199191 -25.52554695  -2.31850569 -10.24616931 
- [995] -22.27223290  -4.57167529  -7.75456863  -2.13869306 -17.30982789 -24.04030147 
-> t.cal.rm <- mean(diff.s)/se(diff.s) 
-> t.cal.rm 
-[1] -19.82846 
-> p.val.rm <- pt(abs(t.cal.rm), length(s1)-1, lower.tail = F) * 2 
-> p.val.rm 
-[1] 4.836389e-74 
-> t.test(s1, s2, paired = T) 
- 
- Paired t-test 
- 
-data:  s1 and s2 
-t = -19.828, df = 999, p-value < 2.2e-16 
-alternative hypothesis: true mean difference is not equal to 0 
-95 percent confidence interval: 
- -10.073732  -8.259379 
-sample estimates: 
-mean difference  
-      -9.166555  
- 
- 
-> # create multiple histogram 
-> s.all <- c(s1,s2) 
-> mean(s.all) 
-[1] 105.2971 
-> hist(s1, col='grey', breaks=50, xlim=c(50, 150)) 
-> hist(s2, col='darkgreen', breaks=50, add=TRUE) 
-> abline(v=c(mean(s.all)),  
-+        col=c("red"), lwd=3) 
-> abline(v=c(mean(s1), mean(s2)),  
-+        col=c("black", "green"), lwd=3) 
- 
-> comb <- data.frame(s1,s2) 
-> dat <- stack(comb) 
-> head(dat) 
-     values ind 
-1  93.17788  s1 
-2 103.00254  s1 
-3 104.53388  s1 
-4  88.59698  s1 
-5 105.67789  s1 
-6 112.72657  s1 
- 
-> m.tot <- mean(s.all) 
-> m.s1 <- mean(s1) 
-> m.s2 <- mean(s2) 
- 
-> ss.tot <- ss(s.all) 
-> ss.s1 <- ss(s1) 
-> ss.s2 <- ss(s2) 
- 
-> df.tot <- length(s.all)-1 
-> df.s1 <- length(s1)-1 
-> df.s2 <- length(s2)-1 
- 
-> ms.tot <- var(s.all) 
-> ms.tot 
-[1] 125.5892 
-> ss.tot/df.tot 
-[1] 125.5892 
- 
-> var(s1) 
-[1] 108.3973 
-> ss.s1 / df.s1 
-[1] 108.3973 
- 
-> var(s2) 
-[1] 100.8519 
-> ss.s2 / df.s2 
-[1] 100.8519 
- 
-> ss.b.s1 <- length(s1) * ((m.tot - m.s1)^2) 
-> ss.b.s2 <- length(s2) * ((m.tot - m.s1)^2) 
-> ss.bet <- ss.b.s1+ss.b.s2 
-> ss.bet 
-[1] 42012.87 
- 
-> ss.wit <- ss.s1 + ss.s2 
-> ss.wit 
-[1] 209039.9 
- 
-> ss.bet + ss.wit 
-[1] 251052.8 
-> ss.tot 
-[1] 251052.8 
- 
-> library(dplyr) 
- 
-다음의 패키지를 부착합니다: ‘dplyr’ 
- 
-The following objects are masked from ‘package:stats’: 
- 
-    filter, lag 
- 
-The following objects are masked from ‘package:base’: 
- 
-    intersect, setdiff, setequal, union 
-> # df.bet <- length(unique(dat)) - 1 
-> df.bet <- nlevels(dat$ind) - 1 
-> df.wit <- df.s1+df.s2 
-> df.bet 
-[1] 1 
-> df.wit 
-[1] 1998 
-> df.bet+df.wit 
-[1] 1999 
-> df.tot  
-[1] 1999 
- 
-> ms.bet <- ss.bet / df.bet 
-> ms.wit <- ss.wit / df.wit 
-> ms.bet 
-[1] 42012.87 
-> ms.wit 
-[1] 104.6246 
- 
-> f.cal <- ms.bet / ms.wit 
-> f.cal 
-[1] 401.5582 
-> pf(f.cal, df.bet, df.wit, lower.tail = F) 
-[1] 1.522061e-81 
- 
- 
-> f.test <-  aov(dat$values~ dat$ind, data = dat) 
-> summary(f.test) 
-              Df Sum Sq Mean Sq F value Pr(>F)     
-dat$ind        1  42013   42013   401.6 <2e-16 *** 
-Residuals   1998 209040     105                    
---- 
-Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
- 
-> sqrt(f.cal) 
-[1] 20.03892 
-> t.cal.ts 
-[1] -20.03892 
- 
-> # this is anova after all.  
- 
-</code> 
  
note.w02.1757673173.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki