r:neural_network
This is an old revision of the document!
Neural Network
> install.packages("nnet")
> library(nnet)
> m <- nnet(Species ~ ., data=iris, size=3)
# weights: 27
initial value 191.494035
iter 10 value 65.618496
iter 20 value 40.493306
iter 30 value 8.542349
iter 40 value 6.034377
iter 50 value 6.000246
iter 60 value 5.998411
iter 70 value 5.983894
iter 80 value 5.972932
iter 90 value 5.968740
iter 100 value 5.965371
final value 5.965371
stopped after 100 iterations
> round(predict(m, newdata=iris),2)
setosa versicolor virginica
1 1 0.00 0.00
2 1 0.00 0.00
3 1 0.00 0.00
4 1 0.00 0.00
5 1 0.00 0.00
6 1 0.00 0.00
7 1 0.00 0.00
8 1 0.00 0.00
9 1 0.00 0.00
10 1 0.00 0.00
11 1 0.00 0.00
12 1 0.00 0.00
13 1 0.00 0.00
14 1 0.00 0.00
15 1 0.00 0.00
16 1 0.00 0.00
17 1 0.00 0.00
18 1 0.00 0.00
19 1 0.00 0.00
20 1 0.00 0.00
21 1 0.00 0.00
22 1 0.00 0.00
23 1 0.00 0.00
24 1 0.00 0.00
25 1 0.00 0.00
26 1 0.00 0.00
27 1 0.00 0.00
28 1 0.00 0.00
29 1 0.00 0.00
30 1 0.00 0.00
31 1 0.00 0.00
32 1 0.00 0.00
33 1 0.00 0.00
34 1 0.00 0.00
35 1 0.00 0.00
36 1 0.00 0.00
37 1 0.00 0.00
38 1 0.00 0.00
39 1 0.00 0.00
40 1 0.00 0.00
41 1 0.00 0.00
42 1 0.00 0.00
43 1 0.00 0.00
44 1 0.00 0.00
45 1 0.00 0.00
46 1 0.00 0.00
47 1 0.00 0.00
48 1 0.00 0.00
49 1 0.00 0.00
50 1 0.00 0.00
51 0 1.00 0.00
52 0 1.00 0.00
53 0 1.00 0.00
54 0 1.00 0.00
55 0 1.00 0.00
56 0 1.00 0.00
57 0 1.00 0.00
58 0 1.00 0.00
59 0 1.00 0.00
60 0 1.00 0.00
61 0 1.00 0.00
62 0 1.00 0.00
63 0 1.00 0.00
64 0 1.00 0.00
65 0 1.00 0.00
66 0 1.00 0.00
67 0 1.00 0.00
68 0 1.00 0.00
69 0 0.95 0.05
70 0 1.00 0.00
71 0 0.59 0.41
72 0 1.00 0.00
73 0 0.77 0.23
74 0 1.00 0.00
75 0 1.00 0.00
76 0 1.00 0.00
77 0 1.00 0.00
78 0 0.73 0.27
79 0 1.00 0.00
80 0 1.00 0.00
81 0 1.00 0.00
82 0 1.00 0.00
83 0 1.00 0.00
84 0 0.12 0.88
85 0 1.00 0.00
86 0 1.00 0.00
87 0 1.00 0.00
88 0 1.00 0.00
89 0 1.00 0.00
90 0 1.00 0.00
91 0 1.00 0.00
92 0 1.00 0.00
93 0 1.00 0.00
94 0 1.00 0.00
95 0 1.00 0.00
96 0 1.00 0.00
97 0 1.00 0.00
98 0 1.00 0.00
99 0 1.00 0.00
100 0 1.00 0.00
101 0 0.00 1.00
102 0 0.00 1.00
103 0 0.00 1.00
104 0 0.00 1.00
105 0 0.00 1.00
106 0 0.00 1.00
107 0 0.11 0.89
108 0 0.00 1.00
109 0 0.00 1.00
110 0 0.00 1.00
111 0 0.01 0.99
112 0 0.00 1.00
113 0 0.00 1.00
114 0 0.00 1.00
115 0 0.00 1.00
116 0 0.00 1.00
117 0 0.00 1.00
118 0 0.00 1.00
119 0 0.00 1.00
120 0 0.08 0.92
121 0 0.00 1.00
122 0 0.00 1.00
123 0 0.00 1.00
124 0 0.06 0.94
125 0 0.00 1.00
126 0 0.00 1.00
127 0 0.19 0.81
128 0 0.20 0.80
129 0 0.00 1.00
130 0 0.03 0.97
131 0 0.00 1.00
132 0 0.00 1.00
133 0 0.00 1.00
134 0 0.77 0.23
135 0 0.03 0.97
136 0 0.00 1.00
137 0 0.00 1.00
138 0 0.00 1.00
139 0 0.33 0.67
140 0 0.00 1.00
141 0 0.00 1.00
142 0 0.00 1.00
143 0 0.00 1.00
144 0 0.00 1.00
145 0 0.00 1.00
146 0 0.00 1.00
147 0 0.00 1.00
148 0 0.00 1.00
149 0 0.00 1.00
150 0 0.02 0.98
> predict(m, newdata=iris, type="class")
[1] "setosa" "setosa" "setosa" "setosa"
[5] "setosa" "setosa" "setosa" "setosa"
[9] "setosa" "setosa" "setosa" "setosa"
[13] "setosa" "setosa" "setosa" "setosa"
[17] "setosa" "setosa" "setosa" "setosa"
[21] "setosa" "setosa" "setosa" "setosa"
[25] "setosa" "setosa" "setosa" "setosa"
[29] "setosa" "setosa" "setosa" "setosa"
[33] "setosa" "setosa" "setosa" "setosa"
[37] "setosa" "setosa" "setosa" "setosa"
[41] "setosa" "setosa" "setosa" "setosa"
[45] "setosa" "setosa" "setosa" "setosa"
[49] "setosa" "setosa" "versicolor" "versicolor"
[53] "versicolor" "versicolor" "versicolor" "versicolor"
[57] "versicolor" "versicolor" "versicolor" "versicolor"
[61] "versicolor" "versicolor" "versicolor" "versicolor"
[65] "versicolor" "versicolor" "versicolor" "versicolor"
[69] "versicolor" "versicolor" "versicolor" "versicolor"
[73] "versicolor" "versicolor" "versicolor" "versicolor"
[77] "versicolor" "versicolor" "versicolor" "versicolor"
[81] "versicolor" "versicolor" "versicolor" "virginica"
[85] "versicolor" "versicolor" "versicolor" "versicolor"
[89] "versicolor" "versicolor" "versicolor" "versicolor"
[93] "versicolor" "versicolor" "versicolor" "versicolor"
[97] "versicolor" "versicolor" "versicolor" "versicolor"
[101] "virginica" "virginica" "virginica" "virginica"
[105] "virginica" "virginica" "virginica" "virginica"
[109] "virginica" "virginica" "virginica" "virginica"
[113] "virginica" "virginica" "virginica" "virginica"
[117] "virginica" "virginica" "virginica" "virginica"
[121] "virginica" "virginica" "virginica" "virginica"
[125] "virginica" "virginica" "virginica" "virginica"
[129] "virginica" "virginica" "virginica" "virginica"
[133] "virginica" "versicolor" "virginica" "virginica"
[137] "virginica" "virginica" "virginica" "virginica"
[141] "virginica" "virginica" "virginica" "virginica"
[145] "virginica" "virginica" "virginica" "virginica"
[149] "virginica" "virginica"
>
r/neural_network.1481671224.txt.gz · Last modified: by hkimscil
