repeated_measure_anova
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| repeated_measure_anova [2017/05/10 00:38] – hkimscil | repeated_measure_anova [2025/05/06 23:40] (current) – [Repeated Measure ANOVA] hkimscil | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | See also, [[ANOVA]], [[: | + | See also, [[ANOVA]], [[: |
| - | 설명이 불충분하므로, [[:Repeated Measure Anova#s-3|아래 참고 사이트]](reference)를 숙지할 것. | + | ====== Repeated |
| - | + | ||
| - | ====== Repeated | + | |
| Introduction | Introduction | ||
| * one-way ANOVA for // | * one-way ANOVA for // | ||
| * extension of the dependent t-test (one group t-test, repeated measure t-test) | * extension of the dependent t-test (one group t-test, repeated measure t-test) | ||
| - | * also, within-subjects ANOVA or ANOVA for correlated samples | + | * also, it is called "within-subjects ANOVA" |
| * the simplest one is __one-way repeated measures ANOVA__ | * the simplest one is __one-way repeated measures ANOVA__ | ||
| * which requires one independent and one dependent variable | * which requires one independent and one dependent variable | ||
| Line 14: | Line 12: | ||
| Test Circumstances | Test Circumstances | ||
| * one subject with repeated measures across a time period (differences of mean scores across three or more time periods) | * one subject with repeated measures across a time period (differences of mean scores across three or more time periods) | ||
| + | * participants being tested with headache drugs such as | ||
| + | * group A, B, C, placebo | ||
| + | * across the time periods j, k, l, m | ||
| + | * testing the effect of a three-month exercise training program on blood sugar level | ||
| + | * measure blood sugar level at 3 different points (pre-exercise, | ||
| * one subject with repeated measures in different situation (treatments; | * one subject with repeated measures in different situation (treatments; | ||
| + | * e.g., participant (n=30) using and evaluating three web site UI (naver, daum, and google) | ||
| + | * and rate its usefulness, usability and ease of use | ||
| + | * data should look as follows: | ||
| + | |||
| + | ^ ^ pre-excerise \\ "sugar level" | ||
| + | | a | 250 | 220 | 150 | | ||
| + | | b | 300 | 170 | 120 | | ||
| + | | c | 150 | 120 | 120 | | ||
| + | | d | 230 | 170 | 160 | | ||
| + | | e | 260 | 250 | 250 | | ||
| + | | | level 1 | level 2 | level 3 | | ||
| + | |||
| + | Levels = related groups of the independent variable " | ||
| + | |||
| + | ^ ^ treatment \\ condition \\ " | ||
| + | | a | 70 | 60 | 80 | | ||
| + | | b | 50 | 70 | 50 | | ||
| + | | c | 40 | 50 | 60 | | ||
| + | | d | 30 | 40 | 60 | | ||
| + | | e | 60 | 50 | 40 | | ||
| + | | | level 1 | level 2 | level 3 | | ||
| + | |||
| + | in general, the data should look | ||
| + | ^ ^ time/ | ||
| + | | | T1 | T2 | T3 | | ||
| + | | s1 | s1 | s1 | s1 | | ||
| + | | s2 | s2 | s2 | s2 | | ||
| + | | s3 | s3 | s3 | s3 | | ||
| + | | s4 | s4 | s4 | s4 | | ||
| + | | s5 | s5 | s5 | s5 | | ||
| + | | .. | .. | .. | .. | | ||
| + | | sn | sn | sn | sn | | ||
| + | |||
| + | You should discern the above from normal ANOVA situation. | ||
| + | |||
| + | ^ ^ group ^ treatment | ||
| + | | a | 1 | 70 | | ||
| + | | b | 1 | 50 | | ||
| + | | c | 1 | 40 | | ||
| + | | d | 1 | 30 | | ||
| + | | e | 1 | 60 | | ||
| + | | f | 2 | 60 | | ||
| + | | g | 2 | 70 | | ||
| + | | h | 2 | 50 | | ||
| + | | i | 2 | 40 | | ||
| + | | j | 2 | 50 | | ||
| + | | k | 3 | 80 | | ||
| + | | l | 3 | 50 | | ||
| + | | m | 3 | 60 | | ||
| + | | n | 3 | 60 | | ||
| + | | o | 3 | 40 | | ||
| LOGICS | LOGICS | ||
| * $\text{independent ANOVA: } F = \displaystyle \frac{MS_{between}}{MS_{within}} = \frac{MS_{between}}{MS_{error}}$ | * $\text{independent ANOVA: } F = \displaystyle \frac{MS_{between}}{MS_{within}} = \frac{MS_{between}}{MS_{error}}$ | ||
| - | |||
| * $\text{rep measures ANOVA: } F = \displaystyle \frac{MS_{between}}{MS_{within}} = \displaystyle \frac{MS_{conditions}}{MS_{error}}$ | * $\text{rep measures ANOVA: } F = \displaystyle \frac{MS_{between}}{MS_{within}} = \displaystyle \frac{MS_{conditions}}{MS_{error}}$ | ||
| + | 주> | ||
| + | * " | ||
| + | |||
| + | -- Picture about here -- | ||
| + | {{: | ||
| + | ---- | ||
| + | {{: | ||
| + | ---- | ||
| * but, $\text{SS}_\text{{within}}$ can be partitioned as | * but, $\text{SS}_\text{{within}}$ can be partitioned as | ||
| * $\text{SS}_{\text{ subjects}}$ and $\text{SS}_{\text{ error}}$ | * $\text{SS}_{\text{ subjects}}$ and $\text{SS}_{\text{ error}}$ | ||
| + | * that is, some of the " | ||
| * Among the two, we can exclude the first from SS< | * Among the two, we can exclude the first from SS< | ||
| * and solely use the latter as SS< | * and solely use the latter as SS< | ||
| Line 29: | Line 91: | ||
| * in $\text{independent ANOVA: } \text{SS}_\text{{within}} = \text{SS}_{\text{error}} $ | * in $\text{independent ANOVA: } \text{SS}_\text{{within}} = \text{SS}_{\text{error}} $ | ||
| * in $\text{rep measures ANOVA: } \text{SS}_\text{{within}} = \text{SS}_{\text{subjects}} + \text{SS}_{\text{error}}$ | * in $\text{rep measures ANOVA: } \text{SS}_\text{{within}} = \text{SS}_{\text{subjects}} + \text{SS}_{\text{error}}$ | ||
| - | + | * This means that the term SS< | |
| + | * But, with this SS< | ||
| + | |||
| + | ^ subjects | ||
| + | | 1 | 45 | 50 | 55 | **50** | ||
| + | | 2 | 42 | 42 | 45 | **43** | ||
| + | | 3 | 36 | 41 | 43 | **40** | ||
| + | | 4 | 39 | 35 | 40 | **38** | ||
| + | | 5 | 51 | 55 | 59 | **55** | ||
| + | | 6 | 44 | 49 | 56 | **49.7** | ||
| + | | **Monthly mean** | ||
| + | | **Grand mean: 45.9** | ||
| + | |||
| + | We do this (and the below example) with an excel {{: | ||
| + | We also require {{: | ||
| ^ Headache Analysis | ^ Headache Analysis | ||
| Line 53: | Line 129: | ||
| SS< | SS< | ||
| - | SS< | + | |
| - | SS< | + | SS< |
| - | SS< | + | = SS< |
| - | = SS< | + | = SS< |
| - | = SS< | + | = $n\Sigma{(\overline{X}_{week} - \overline{X})^2}$ = 1934.5 \\ |
| + | |||
| + | SS< | ||
| + | = $ \Sigma \Sigma{(X_{s_i.t_j} - \overline{X_{t_j}})^2}$ | ||
| + | = $ \Sigma (411.6, 836.0, 78.0, 93.6, 135.6) $ | ||
| + | = 1554.7 | ||
| + | \\ | ||
| + | |||
| + | SS< | ||
| + | |||
| + | SS< | ||
| + | = SS< | ||
| + | = SS< | ||
| + | = 1554.7 - 833.6 | ||
| + | = 721.1 | ||
| + | |||
| + | OR | ||
| + | SS< | ||
| + | = SS< | ||
| + | = (SS< | ||
| = 721.1 \\ | = 721.1 \\ | ||
| \\ | \\ | ||
| Line 73: | Line 168: | ||
| | C | 38 | 18 | 40 | | | C | 38 | 18 | 40 | | ||
| | D | 45 | 32 | 43 | | | D | 45 | 32 | 43 | | ||
| + | ====== in r ====== | ||
| + | ===== demo1 ===== | ||
| + | |||
| + | [[https:// | ||
| + | <WRAP box info> | ||
| + | data files in e.gs: | ||
| + | {{: | ||
| + | {{: | ||
| + | {{: | ||
| + | {{: | ||
| + | {{: | ||
| + | </ | ||
| + | |||
| + | < | ||
| + | demo1 <- read.csv(" | ||
| + | demo1 | ||
| + | str(demo1) ## 모든 변인이 int이므로 (숫자) factor로 바꿔야 한다 | ||
| + | |||
| + | ## Convert variables to factor | ||
| + | demo1 <- within(demo1, | ||
| + | group <- factor(group) | ||
| + | time <- factor(time) | ||
| + | id <- factor(id) | ||
| + | }) ## 이제 pulse만 제외하고 모두 factor로 변환된 데이터 | ||
| + | |||
| + | str(demo1) | ||
| + | </ | ||
| + | |||
| + | demo1 data는 아래와 같다. | ||
| + | < | ||
| + | id group pulse time | ||
| + | 1 1 10 1 | ||
| + | 1 1 10 2 | ||
| + | 1 1 10 3 | ||
| + | 2 1 10 1 | ||
| + | 2 1 10 2 | ||
| + | 2 1 10 3 | ||
| + | 3 1 10 1 | ||
| + | 3 1 10 2 | ||
| + | 3 1 10 3 | ||
| + | 4 1 10 1 | ||
| + | 4 1 10 2 | ||
| + | 4 1 10 3 | ||
| + | 5 2 15 1 | ||
| + | 5 2 15 2 | ||
| + | 5 2 15 3 | ||
| + | 6 2 15 1 | ||
| + | 6 2 15 2 | ||
| + | 6 2 15 3 | ||
| + | 7 2 16 1 | ||
| + | 7 2 15 2 | ||
| + | 7 2 15 3 | ||
| + | 8 2 15 1 | ||
| + | 8 2 15 2 | ||
| + | 8 2 15 3 | ||
| + | </ | ||
| + | 이를 정리해보면 | ||
| + | |||
| + | || || time |||||||| | ||
| + | || || t1 || t2 || t3 || mean \\ of the \\ same person' | ||
| + | || 1 || 10 || 10 || 10 || 10 || | ||
| + | || 2 || 10 || 10 || 10 || 10 || | ||
| + | || 3 || 10 || 10 || 10 || 10 || | ||
| + | || 4 || 10 || 10 || 10 || 10 || | ||
| + | || 5 || 15 || 15 || 15 || 15 || | ||
| + | || 6 || 15 || 15 || 15 || 15 || | ||
| + | || 7 || 16 || 15 || 15 || 15.333 | ||
| + | || 8 || 15 || 15 || 15 || 15 || | ||
| + | || mean \\ across \\ the time || 12.625 | ||
| + | |||
| + | |||
| + | < | ||
| + | demo1.within.only.aov <- aov(pulse ~ time + Error(id), data = demo1) | ||
| + | summary(demo1.within.only.aov) | ||
| + | </ | ||
| + | |||
| + | < | ||
| + | > demo1.within.only.aov <- aov(pulse ~ time + Error(id), data = demo1) | ||
| + | > summary(demo1.within.only.aov) | ||
| + | |||
| + | Error: id | ||
| + | Df Sum Sq Mean Sq F value Pr(>F) | ||
| + | Residuals | ||
| + | |||
| + | Error: Within | ||
| + | Df Sum Sq Mean Sq F value Pr(>F) | ||
| + | time 2 0.0833 0.04167 | ||
| + | Residuals 14 0.5833 0.04167 | ||
| + | > | ||
| + | </ | ||
| + | |||
| + | see {{: | ||
| + | ===== demo 2 ===== | ||
| + | see [[: | ||
| + | ===== Twoway repeated measure anova===== | ||
| + | see [[:r:twoway repeated measure anova]] | ||
| ====== reference ====== | ====== reference ====== | ||
| Line 79: | Line 270: | ||
| * http:// | * http:// | ||
| * https:// | * https:// | ||
| + | |||
| + | * http:// | ||
repeated_measure_anova.1494376694.txt.gz · Last modified: by hkimscil
