====== Path Analysis ====== {{:r:pasted:20230529-234519.png}} ====== Introduction ====== {{youtube>UGIVPtFKwc0}} {{:r:pasted:20221104-083351.png}} Regressions vs. Path Analysis (or SEM) * Intention = a1 + b1(Attitude) + b2(Norms) + b3(Control) * Behavior = a2 + b4(Intention) * When in a combined situation, we use * Path Analysis or SEM Model Identification * Terms * The number of unique (non-redundent) source of information * $p(p+1)/2$ * The number of parameters (paths) specified in model * Just-identified (df = 0) * Model can be estimated, but cannot be assessed * Over-identified (df > 0) * Model can be estimated and assessed * Under-identified (df < 0) * Model cannot be either estimated or assessed * Exogenous and * Endogenous Variables * Covariance * Variance * Path coefficient * Residual error {{:r:pasted:20221104-083844.png}} {{:r:pasted:20221104-084315.png}} out of possible 15 relationships 15 - 12 =3 (df) {{:r:pasted:20221104-084633.png}} * Model fit * Chi-square Test: p-value less than p-critical value (.05 for example) indicates that model does not fit well enough. p-value more than critical value means the model fits the data relatively well. The test is sensitive to the sample size and normality of the data. * CFI (Comparative Fit Index): greater than .90 indicates good fit to the data. It is less sensitive to the sample size and normality of the data than chi-square test. * TLI (Tucker-Lewis Index): greater than .95 (sometimes .90) indicates good fit. It is less sensitive to the sample size. * RMSEA (Root Mean Square Error of Approximation): equal to or less than .08 (sometimes .10 is used) indicates good fit to the data. * SRMR (Standard Root Mean square Residual): less than or equal to .08 indicates good fit to the data. | $\chi^2$ | $\text{CFI}$ | $\text{TLI}$ | $\text{RMSEA}$ | $\text{SRMR}$ | | $p \ge .05$ | $p \ge .90$ | $p \ge .95$ | $p \le .08$ | $p \le .08$ | Then what is SEM (Structural Equation Modeling) * Relationships within and among variables and constructs ====== E.g. in R ====== ###################################################### ## data file: PlannedBehavior.csv ###################################################### ###################################################### install.packages("readr") library(readr) df <- read.csv("http://commres.net/wiki/_media/r/plannedbehavior.csv") head(df) str(df) # path analysis in R using lavaan package # install.packages("lavaan") library(lavaan) # Model speficiation specmod <- " intention ~ attitude + norms + control " # Estimate model fitmod <- sem(specmod, data=df) # summarize the result summary(fitmod, fit.measures=TRUE, rsquare=TRUE) ===== specmod2 ===== # Model speficiation 2 specmod2 <- " intention ~ attitude + norms + control attitude ~~ norms + control norms ~~ control " fitmod2 <- sem(specmod2, data=df) # summarize the result summary(fitmod2, fit.measures=TRUE, rsquare=TRUE) ===== specmod3: lm ===== fitmod3 <- lm(intention~attitude+norms+control, data=df) summary(fitmod3) ===== specmod4 ===== # pbt model specmod4 <- " # Directional relations (path) intention ~ attitude + norms + control behavior ~ intention # Covariances attitude ~~ norms + control norms ~~ control " fitmod4 <- sem(specmod4, data=df) summary(fitmod4, fit.measures=TRUE, rsquare=TRUE) ---- # my own # pbt model specmod5 <- ' # Directional relations (path) intention ~ a*attitude + b*norms + c*control behavior ~ d*intention # Covariances attitude ~~ norms + control norms ~~ control ad := a*d bd := b*d cd := c*d ' fitmod5 <- sem(specmod5, data=df) summary(fitmod5, fit.measures=TRUE, rsquare=TRUE) ====== Output ====== > df <- read.csv("http://commres.net/wiki/_media/r/plannedbehavior.csv") > head(df) attitude norms control intention behavior 1 2.31 2.31 2.03 2.50 2.62 2 4.66 4.01 3.63 3.99 3.64 3 3.85 3.56 4.20 4.35 3.83 4 4.24 2.25 2.84 1.51 2.25 5 2.91 3.31 2.40 1.45 2.00 6 2.99 2.51 2.95 2.59 2.20 > str(df) 'data.frame': 199 obs. of 5 variables: $ attitude : num 2.31 4.66 3.85 4.24 2.91 2.99 3.96 3.01 4.77 3.67 ... $ norms : num 2.31 4.01 3.56 2.25 3.31 2.51 4.65 2.98 3.09 3.63 ... $ control : num 2.03 3.63 4.2 2.84 2.4 2.95 3.77 1.9 3.83 5 ... $ intention: num 2.5 3.99 4.35 1.51 1.45 2.59 4.08 2.58 4.87 3.09 ... $ behavior : num 2.62 3.64 3.83 2.25 2 2.2 4.41 4.15 4.35 3.95 ... > > # path analysis in R using lavaan package > # install.packages("lavaan") > library(lavaan) This is lavaan 0.6-9 lavaan is FREE software! Please report any bugs. Warning message: 패키지 ‘lavaan’는 R 버전 4.1.2에서 작성되었습니다 > > # Model speficiation > specmod <- " + intention ~ attitude + norms + control + " > # Estimate model > fitmod <- sem(specmod, data=df) > > # summarize the result > summary(fitmod, fit.measures=TRUE, rsquare=TRUE) lavaan 0.6-9 ended normally after 11 iterations Estimator ML Optimization method NLMINB Number of model parameters 4 Number of observations 199 Model Test User Model: Test statistic 0.000 Degrees of freedom 0 Model Test Baseline Model: Test statistic 91.633 Degrees of freedom 3 P-value 0.000 User Model versus Baseline Model: Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.000 Loglikelihood and Information Criteria: Loglikelihood user model (H0) -219.244 Loglikelihood unrestricted model (H1) -219.244 Akaike (AIC) 446.489 Bayesian (BIC) 459.662 Sample-size adjusted Bayesian (BIC) 446.990 Root Mean Square Error of Approximation: RMSEA 0.000 90 Percent confidence interval - lower 0.000 90 Percent confidence interval - upper 0.000 P-value RMSEA <= 0.05 NA Standardized Root Mean Square Residual: SRMR 0.000 Parameter Estimates: Standard errors Standard Information Expected Information saturated (h1) model Structured Regressions: Estimate Std.Err z-value P(>|z|) intention ~ attitude 0.352 0.058 6.068 0.000 norms 0.153 0.059 2.577 0.010 control 0.275 0.058 4.740 0.000 Variances: Estimate Std.Err z-value P(>|z|) .intention 0.530 0.053 9.975 0.000 R-Square: Estimate intention 0.369 ===== specmod2: ===== > # Model speficiation 2 > specmod2 <- " + intention ~ attitude + norms + control + attitude ~~ norms + control + norms ~~ control + " > fitmod2 <- sem(specmod2, data=df) > > # summarize the result > summary(fitmod2, fit.measures=TRUE, rsquare=TRUE) lavaan 0.6-9 ended normally after 17 iterations Estimator ML Optimization method NLMINB Number of model parameters 10 Number of observations 199 Model Test User Model: Test statistic 0.000 Degrees of freedom 0 Model Test Baseline Model: Test statistic 136.306 Degrees of freedom 6 P-value 0.000 User Model versus Baseline Model: Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.000 Loglikelihood and Information Criteria: Loglikelihood user model (H0) -1011.828 Loglikelihood unrestricted model (H1) -1011.828 Akaike (AIC) 2043.656 Bayesian (BIC) 2076.589 Sample-size adjusted Bayesian (BIC) 2044.908 Root Mean Square Error of Approximation: RMSEA 0.000 90 Percent confidence interval - lower 0.000 90 Percent confidence interval - upper 0.000 P-value RMSEA <= 0.05 NA Standardized Root Mean Square Residual: SRMR 0.000 Parameter Estimates: Standard errors Standard Information Expected Information saturated (h1) model Structured Regressions: Estimate Std.Err z-value P(>|z|) intention ~ attitude 0.352 0.058 6.068 0.000 norms 0.153 0.059 2.577 0.010 control 0.275 0.058 4.740 0.000 Covariances: Estimate Std.Err z-value P(>|z|) attitude ~~ norms 0.200 0.064 3.128 0.002 control 0.334 0.070 4.748 0.000 norms ~~ control 0.220 0.065 3.411 0.001 Variances: Estimate Std.Err z-value P(>|z|) .intention 0.530 0.053 9.975 0.000 attitude 0.928 0.093 9.975 0.000 norms 0.830 0.083 9.975 0.000 control 0.939 0.094 9.975 0.000 R-Square: Estimate intention 0.369 ===== specmod3: lm ===== > fitmod3 <- lm(intention~attitude+norms+control, data=df) > summary(fitmod3) Call: lm(formula = intention ~ attitude + norms + control, data = df) Residuals: Min 1Q Median 3Q Max -1.80282 -0.52734 -0.06018 0.51228 1.85202 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.58579 0.23963 2.445 0.0154 * attitude 0.35232 0.05866 6.006 9.13e-09 *** norms 0.15250 0.05979 2.550 0.0115 * control 0.27502 0.05862 4.692 5.09e-06 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.7356 on 195 degrees of freedom Multiple R-squared: 0.369, Adjusted R-squared: 0.3593 F-statistic: 38.01 on 3 and 195 DF, p-value: < 2.2e-16 ===== specmod4 ===== > > # pbt model > specmod4 <- " + # Directional relations (path) + intention ~ attitude + norms + control + behavior ~ intention + # Covariances + attitude ~~ norms + control + norms ~~ control + " > fitmod4 <- sem(specmod4, data=df) > summary(fitmod4, fit.measures=TRUE, rsquare=TRUE) lavaan 0.6-9 ended normally after 17 iterations Estimator ML Optimization method NLMINB Number of model parameters 12 Number of observations 199 # chi-square test # p-value is over .05 indicating . . . . Model Test User Model: Test statistic 2.023 Degrees of freedom 3 P-value (Chi-square) 0.568 Model Test Baseline Model: Test statistic 182.295 Degrees of freedom 10 P-value 0.000 # CFI >_ .90 # TLI >_ .95 # The two indicate that the model fits to the data well User Model versus Baseline Model: Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.019 Loglikelihood and Information Criteria: Loglikelihood user model (H0) -1258.517 Loglikelihood unrestricted model (H1) -1257.506 Akaike (AIC) 2541.035 Bayesian (BIC) 2580.555 Sample-size adjusted Bayesian (BIC) 2542.538 # RMSEA <_ .08 # Root Mean Square Error of Approximation: RMSEA 0.000 90 Percent confidence interval - lower 0.000 90 Percent confidence interval - upper 0.103 P-value RMSEA <= 0.05 0.735 # SRMR <_ .08 meets the standard # Standardized Root Mean Square Residual: SRMR 0.019 Parameter Estimates: Standard errors Standard Information Expected Information saturated (h1) model Structured Regressions: Estimate Std.Err z-value P(>|z|) intention ~ attitude 0.352 0.058 6.068 0.000 norms 0.153 0.059 2.577 0.010 control 0.275 0.058 4.740 0.000 behavior ~ intention 0.453 0.065 7.014 0.000 Covariances: Estimate Std.Err z-value P(>|z|) attitude ~~ norms 0.200 0.064 3.128 0.002 control 0.334 0.070 4.748 0.000 norms ~~ control 0.220 0.065 3.411 0.001 Variances: Estimate Std.Err z-value P(>|z|) .intention 0.530 0.053 9.975 0.000 .behavior 0.699 0.070 9.975 0.000 attitude 0.928 0.093 9.975 0.000 norms 0.830 0.083 9.975 0.000 control 0.939 0.094 9.975 0.000 R-Square: Estimate intention 0.369 behavior 0.198 ===== specmod5 ===== > specmod5 <- " + # Directional relations (path) + intention ~ attitude + norms + control + behavior ~ intention + norms + # Covariances + attitude ~~ norms + control + norms ~~ control + " > fitmod5 <- sem(specmod5, data=df) > summary(fitmod5, fit.measures=TRUE, rsquare=TRUE) lavaan 0.6-12 ended normally after 18 iterations Estimator ML Optimization method NLMINB Number of model parameters 13 Number of observations 199 Model Test User Model: Test statistic 1.781 Degrees of freedom 2 P-value (Chi-square) 0.410 Model Test Baseline Model: Test statistic 182.295 Degrees of freedom 10 P-value 0.000 User Model versus Baseline Model: Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.006 Loglikelihood and Information Criteria: Loglikelihood user model (H0) -1258.396 Loglikelihood unrestricted model (H1) -1257.506 Akaike (AIC) 2542.792 Bayesian (BIC) 2585.605 Sample-size adjusted Bayesian (BIC) 2544.421 Root Mean Square Error of Approximation: RMSEA 0.000 90 Percent confidence interval - lower 0.000 90 Percent confidence interval - upper 0.136 P-value RMSEA <= 0.05 0.569 Standardized Root Mean Square Residual: SRMR 0.018 Parameter Estimates: Standard errors Standard Information Expected Information saturated (h1) model Structured Regressions: Estimate Std.Err z-value P(>|z|) intention ~ attitude 0.352 0.058 6.068 0.000 norms 0.153 0.059 2.577 0.010 control 0.275 0.058 4.740 0.000 behavior ~ intention 0.443 0.068 6.525 0.000 norms 0.034 0.068 0.493 0.622 Covariances: Estimate Std.Err z-value P(>|z|) attitude ~~ norms 0.200 0.064 3.128 0.002 control 0.334 0.070 4.748 0.000 norms ~~ control 0.220 0.065 3.411 0.001 Variances: Estimate Std.Err z-value P(>|z|) .intention 0.530 0.053 9.975 0.000 .behavior 0.698 0.070 9.975 0.000 attitude 0.928 0.093 9.975 0.000 norms 0.830 0.083 9.975 0.000 control 0.939 0.094 9.975 0.000 R-Square: Estimate intention 0.369 behavior 0.199 ===== Lavaan in R: explanation ===== {{youtube>QP-v6RwsZjY?start=251}} Path analysis in R with Lavaan (introduction) By Mike Crowson, Ph.D. September 17, 2019 * Overview: There are two basic functions that allow you to run path analysis in Lavaan: the 'sem' and the 'lavaan' functions.This video will demonstrate how to specify a path model involving only manifest variables and how to estimate model parameters using the 'lavaan' function. A copy of this text file and a .csv file containing the raw data will be available for download underneath the video description. You will notice that I use the pound sign (#) in some of the syntax. The # sign is used for comments and are not read by the program. I use it in some of the syntax below to provide annotations. * If you have not already done so, you will need to install Lavaan. install.packages("lavaan") * Read data into R and store in data object. Make sure you have R correctly pointed to the folder containing your data. Below is syntax to create a data frame called 'processdata' when reading the .csv file (referenced above) into R.This is the data frame we will be using when running our analyses. # processdata<-read.csv("path analysis dataN BinW.csv", header=TRUE, sep=",") processdata<-read.csv("http://commres.net/wiki/_media/r/path_analysis_datan_binw.csv", header=TRUE, sep=",", fileEncoding="UTF-8-BOM") * Using the 'str' function, you can look at the structure of the data. str(processdata) * Use libary function to call up lavaan library(lavaan) * 'lavaan' function * Step 1: Use lavaan model syntax to specify path model and have it stored in an R object. In our model, we will treat ses, mastery goals, and performance goals as predictors of student achievement. The effect of mastery on achievement will be both direct and indirect (via interest and anxiety. The effects of ses and performance goals will be treated as being fully mediated through anxiety and interest. * When specifying predictive relationships in the model, we use the tilde sign ('~'), which separates thedependent variable in each equation from its predictors. Predictors are separated in each equation by '+' sign. In our model, we will also allow the residuals for anxiety and interest to correlate (see '~~' in syntax below) # model specification model <- ' #equation where interest is predicted by ses # & mastery and performance goals interest ~ mastery + perfgoal + ses # equation where achieve is predicted by # interest and anxiety achieve ~ anxiety + interest + mastery # equation where anxiety is predicted # by mastery and performance goals anxiety ~ perfgoal + mastery # estimating the variances of # the exogenous variables (ses, mastery,performance) mastery ~~ mastery perfgoal ~~ perfgoal ses ~~ ses # estimtating the covariances of the exogenous # variables (ses, mastery,performance) mastery ~~ perfgoal + ses perfgoal ~~ ses # estimating the residual variances # for endogenous variables (interest, anxiety, achieve) interest ~~ interest anxiety ~~ anxiety achieve ~~ achieve # estimating the covariance of residuals # for interest and anxiety interest ~~ anxiety ' * Step 2: Use 'lavaan' function to run analysis. Here, I will be saving the results in an R object called 'fit' (arbitrarily named). Inside the parenthesis are arguments separated by commas. The first argument contains the name of the object containing the model syntax (see above). The object is named 'model' (again, arbitrarily named above). Next, we have the 'data' argument. This identifies the object (i.e., data frame) containing the raw data. fit<-lavaan(model, data=processdata) * The 'summary' function can be used to obtain various fit measures and the parameter estimates for the model summary(fit, fit.measures=TRUE) * To obtain standardized estimates, use the 'standardized' argument (setting it to TRUE) when using the 'summary' function. You will need to interpret the Std.all column in the output, as it will provide standardized estimates for all measured variables in the model. summary(fit, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE) * Using the 'parameterEstimates' function, you can obtain confidence intervals parameterEstimates(fit) * For a more comprehensive set of fit measures, use the 'fitMeasures' function fitMeasures(fit) * To obtain modification indices, you can use the 'modificationIndices' function modificationIndices(fit) * Note: Modification indices represent the expected decrease in model chi-square after freeing a given parameter (Schumacker & Lomax, 2004). The EPC is an estimate of the model parameter itself. A MI value of 3.84 or greater may be considered "significant" (at the .05) level. Warning: This is totally an empirically based approach to model specification. Consult your theory when using these! ----------------------------- * Specification of model using auto.var argument... # model specification model<-' # equation where interest is predicted by ses & mastery and # performance goals interest ~ mastery + perfgoal + ses # equation where achieve is predicted by interest and anxiety achieve~anxiety+interest+mastery #equation where anxiety is predicted by mastery and performance goals anxiety~perfgoal+mastery # estimtating the variances of the exogenous variables (ses, mastery,performance) mastery~~mastery perfgoal~~perfgoal ses~~ses # estimtating the covariances of the exogenous variables (ses, mastery,performance) mastery~~perfgoal+ses perfgoal~~ses # The auto.var argument when fitting the model can be used so that # you do not have to directly request estimation of residual variances # Estimating the covariance of residuals for interest and anxiety interest~~anxiety' fit<-lavaan(model, data=processdata, auto.var=TRUE) summary(fit, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE) * There are a couple of ways you can obtain path diagrams (although they can be somewhat tricky to implement. * One approach is to use the 'semPaths' function from the 'semPlot' package. Below, I provide a rough demo of this approach. Citations containing additional information is provided below the demo. install.packages("semPlot") library("semPlot") semPaths(fit,what="paths",whatLabels="par",style="lisrel",layout="tree", rotation=2) * A second approach is to use the 'lavaanPlot" function from the 'lavaanPlot' package. install.packages("lavaanPlot") library(lavaanPlot) lavaanPlot(model = fit, node_options = list(shape = "box", fontname = "Helvetica"), edge_options = list(color = "grey"), coefs = TRUE, covs = TRUE, stars = c("regress")) ---- Resources on the use of lavaan: * http://lavaan.ugent.be/tutorial/tutorial.pdf * https://www.jstatsoft.org/index.php/jss/article/view/v048i02/v48i02.pdf * https://cran.r-project.org/web/packages/lavaan/lavaan.pdf * http://lavaan.ugent.be/tutorial/index.html ---- Using the 'semPlot' package * https://cran.r-project.org/web/packages/semPlot/semPlot.pdf * https://www.rdocumentation.org/packages/semPlot/versions/1.1.2/topics/semPaths * http://sachaepskamp.com/semPlot/examples ---- Using the 'lavaanPlot' package * https://cran.r-project.org/web/packages/lavaanPlot/lavaanPlot.pdf * https://cran.r-project.org/web/packages/lavaanPlot/vignettes/Intro_to_lavaanPlot.html * https://cran.rstudio.com/web/packages/lavaanPlot/vignettes/Intro_to_lavaanPlot.html * http://www.alexlishinski.com/post/2018-04-13-lavaanplot0.5/ ---- Raw data for all examples can be downloaded at... * https://drive.google.com/open?id=1Ge0kIn7-f6gSfL40mZ47zGFH5WNSXRBt A copy of the Powerpoint of the model specification can be downloaded at... * https://drive.google.com/open?id=1Nvpz7RnBEfEzK1VJKZksy6PBO4mzbdLO Basics of path analysis using Lavaan.txt Displaying Basics of path analysis using Lavaan.txt. CODING processdata<-read.csv("http://commres.net/wiki/_media/r/path_analysis_datan_binw.csv", header=TRUE, sep=",", fileEncoding="UTF-8-BOM") str(processdata) library(lavaan) model <- ' interest ~ mastery + perfgoal + ses achieve ~ anxiety + interest + mastery anxiety ~ perfgoal + mastery # variances mastery ~~ mastery perfgoal ~~ perfgoal ses ~~ ses mastery ~~ perfgoal + ses perfgoal ~~ ses interest ~~ interest anxiety ~~ anxiety achieve ~~ achieve interest~~anxiety ' fit <- lavaan(model, data=processdata) fit <- sem(model, data=processdata) summary(fit, fit.measures=TRUE) summary(fit, fit.measures=TRUE, standardized=TRUE, rsquare=TRUE) parameterEstimates(fit) fitMeasures(fit) modificationIndices(fit) install.packages("semPlot") library("semPlot") semPaths(fit,what="paths",whatLabels="par",style="lisrel",layout="tree", rotation=2) install.packages("lavaanPlot") library(lavaanPlot) lavaanPlot( model = fit, node_options = list(shape = "box", fontname = "Helvetica"), edge_options = list(color = "grey"), coefs = TRUE, covs=TRUE, stars = c("regress")) ---- ===== Lavaan 2 ===== {{youtube>_tTPHt4cPwI}} model <- ' # labeling path from mastery to interest interest ~ a*mastery + perfgoal + ses # labeling path from interest to achieve. # Adding labeled path from # mastery to achieve achieve ~ e*anxiety + b*interest + c*mastery # predicting anxiety and labeling path from mastery anxiety ~ perfgoal + d*mastery # estimtating the variances and covariances of # the exogenous variables (ses, mastery,performance) mastery~~mastery perfgoal~~perfgoal ses~~ses mastery~~perfgoal+ses perfgoal~~ses # estimating the variances of residuals # for endogenous variables # (interest, anxiety, achieve) interest~~interest anxiety~~anxiety achieve~~achieve # estimating the covariance of residuals # for interest and anxiety interest~~anxiety # calculating specific indirect effect # of mastery on achieve via interest SIE1:=a*b # calculating specific indirect effect of # mastery on achieve via anxiety SIE2:=d*e # calculating total indirect effect of # mastery on achievement via mediators TIE:=SIE1+SIE2 # calculating total effect of mastery on achieve TE:=TIE+c' # using naive bootstrap to obtain standard errors fit <- sem(model, data=processdata, se="bootstrap") summary(fit,fit.measures=TRUE) # using 'parameterEstimates' function will give # us confidence intervals based on naive bootstrap. # A standard approach to testing indirect effects. parameterEstimates(fit) ---- ===== Lavaan 3: Testing data normality ===== {{youtube>HvYW_GeHpD8}} processdata <- read.csv("http://commres.net/wiki/_media/r/path_analysis_datan_binw.csv") str(processdata) # install.packages("MVN") library(MVN) newdata <- processdata[c("achieve", "interest", "anxiety")] str(newdata) Use the 'mvn' function to evalue normality Multivariate normality is evidenced by p-values associated with multivariate skewness and kurtosis statistics that are > .05. In those cases where both the skewness and kurtosis results are non-significant (p's > .05), then the data are assumed to follow a multivariate normal distribution where p > .05 (Korkmaz, Goksuluk, & Zarasiz, 2014, 2019). You can also use plots to explore possible multivariate outliers. Moreover, you can examine univariate tests of normality (the default is Shapiro-Wilk test, but can be changed if desired). A significant test result regarding a specific variable indicates a significant departure from normality. mvn(newdata, mvnTest="mardia") mvn(newdata, multivariatePlot="qq") mvn(newdata, multivariateOutlierMethod="quan") You can generate univariate plot as well to evaluate distribution of the endogenous variables for non-normality. Skewness values approaching 2 or kurtoisis values over 7 may be considered indicative of more "significant problems" with non-normality (Curran, et al., 1996). mvn(newdata, univariatePlot="histogram") mvn(newdata, univariatePlot="box") model <- ' interest ~ mastery + perfgoal + ses achieve ~ anxiety + interest + mastery anxiety ~ perfgoal + mastery # variances mastery ~~ mastery perfgoal ~~ perfgoal ses ~~ ses mastery ~~ perfgoal + ses perfgoal ~~ ses interest ~~ interest anxiety ~~ anxiety achieve ~~ achieve interest~~anxiety ' We will fit the model using the 'estimator' argument at set it equal to "MLM." This will result in the Satorra-Bentler model chi-square being computed. We will also use the 'se' argument and set it to "roburst." fit <- sem(model, data=processdata, estimator = "MLM", se="roburst") summary(fit,fit.measures=TRUE) ---- reference {{youtube>8r9bUKUVecc?small}} see [[https://www.rensvandeschoot.com/tutorials/lme4/|lme4 tutorial]] ===== Exercise ===== Using mtcars in R ?mtcars mtcars str(mtcars) df <- mtcars # model specfication model <-' mpg ~ hp + gear + cyl + disp + carb + am + wt hp ~ cyl + disp + carb ' # model fit fit <- cfa(model, data = mtcars) summary(fit, fit.measures = TRUE, standardized=T, rsquare=T) semPaths(fit, 'std', layout = 'circle')