Notes on Graphics Functions
It is important to understand the distinction between high-level and low-level graphics functions. A high-level graphics function starts a new graph. It initializes the graphics window (creating it if necessary); sets the scale; maybe draws some adornments, such as a title and labels; and renders the graphic. Examples include:
plot
boxplot
hist
qqnorm
curve
A low-level graphics function cannot start a new graph. Rather, it adds something to an existing graph: points, lines, text, adornments, and so forth. Examples include:
points
lines
abline
segments
polygon
text
You must call a high-level graphics routine before calling a low-level graphics routine. The low-level routine needs to have the graph initialized; otherwise, you get an error like this:
> abline(a=0, b=1) Error in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...) : plot.new has not been called yet
plot(x) produces different results depending on whether x is a vector, a factor, a data frame, a linear regression model, a table, or whatever.
Scatter Plot (number by number data)
> cars speed dist 1 4 2 2 4 10 3 7 4 4 7 22 5 8 16 6 9 10 7 10 18 8 10 26 9 10 34 10 11 17 11 11 28 12 12 14 13 12 20 14 12 24 15 12 28 16 13 26 17 13 34 18 13 34 19 13 46 20 14 26 21 14 36 22 14 60 23 14 80 24 15 20 25 15 26 26 15 54 27 16 32 28 16 40 29 17 32 30 17 40 31 17 50 32 18 42 33 18 56 34 18 76 35 18 84 36 19 36 37 19 46 38 19 68 39 20 32 40 20 48 41 20 52 42 20 56 43 20 64 44 22 66 45 23 54 46 24 70 47 24 92 48 24 93 49 24 120 50 25 85 >
The same thig . . .
> plot(cars) > plot(cars$speed, cars$dist)
When calling plot:
> plot(x, main="The Title", xlab="X-axis Label", ylab="Y-axis Label")
plot(cars, main="cars: Speed vs. Stopping Distance (1920)", xlab="Speed (MPH)", ylab="Stopping Distance (ft)")
> plot(x, y, type="n") > grid() > points(x, y)
plot(cars, main="cars: Speed vs. Stopping Distance (1920)", xlab="Speed (MPH)", ylab="Stopping Distance (ft)", type="n")
grid() points(cars)
with(iris, plot(Petal.Length, Petal.Width)) with(iris, plot(Petal.Length, Petal.Width, pch=as.integer(Species)))
Here is how you create legends for points, lines, and colors:
Legend for points
legend(x, y, labels, pch=c(pointtype1, pointtype2, ...))
Legend for lines according to line type
legend(x, y, labels, lty=c(linetype1, linetype2, ...))
Legend for lines according to line width
legend(x, y, labels, lwd=c(width1, width2, ...))
Legend for colors
legend(x, y, labels, col=c(color1, color2, ...))
> legend(1.5, 2.4, c("setosa","versicolor","virginica"), pch=1:3)
> legend(1, 2.5, c("setosa","versicolor","virginica"), pch=1:3, col="red")
> f <- factor(iris$Species) > with(iris, plot(Petal.Length, Petal.Width, pch=as.integer(f))) > legend(1.5, 2.4, as.character(levels(f)), pch=1:length(levels(f)), col=c("red","blue","green"))
> install.packages("faraway") > library(faraway) > > data(strongx) > strongx momentum energy crossx sd 1 4 0.345 367 17 2 6 0.287 311 9 3 8 0.251 295 9 4 10 0.225 268 7 5 12 0.207 253 7 6 15 0.186 239 6 7 20 0.161 220 6 8 30 0.132 213 6 9 75 0.084 193 5 10 150 0.060 192 5 > m <- lm(crossx ~ energy, data=strongx) # get linear regression model > plot(crossx ~ energy, data=strongx) > abline(m)
# Creating a Graph attach(mtcars) plot(wt, mpg) abline(lm(mpg~wt)) title("Regression of MPG on Weight")
?LifeCycleSavings lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings) > summary(lm.SR) Call: lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings) Residuals: Min 1Q Median 3Q Max -8.2422 -2.6857 -0.2488 2.4280 9.7509 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 28.5660865 7.3545161 3.884 0.000334 *** pop15 -0.4611931 0.1446422 -3.189 0.002603 ** pop75 -1.6914977 1.0835989 -1.561 0.125530 dpi -0.0003369 0.0009311 -0.362 0.719173 ddpi 0.4096949 0.1961971 2.088 0.042471 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.803 on 45 degrees of freedom Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797 F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904 > plot(LifeCycleSavings) > plot(lm.SR)
> head(iris) Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa
plot(iris[,1:4])
> airquality Ozone Solar.R Wind Temp Month Day 1 41 190 7.4 67 5 1 2 36 118 8.0 72 5 2 3 12 149 12.6 74 5 3 4 18 313 11.5 62 5 4 5 NA NA 14.3 56 5 5 6 28 NA 14.9 66 5 6 7 23 299 8.6 65 5 7 8 19 99 13.8 59 5 8 9 8 19 20.1 61 5 9 10 NA 194 8.6 69 5 10 11 7 NA 6.9 74 5 11 12 16 256 9.7 69 5 12 13 11 290 9.2 66 5 13 14 14 274 10.9 68 5 14 15 18 65 13.2 58 5 15 16 14 334 11.5 64 5 16 17 34 307 12.0 66 5 17 18 6 78 18.4 57 5 18 19 30 322 11.5 68 5 19 20 11 44 9.7 62 5 20 21 1 8 9.7 59 5 21 22 11 320 16.6 73 5 22 23 4 25 9.7 61 5 23 24 32 92 12.0 61 5 24 25 NA 66 16.6 57 5 25 26 NA 266 14.9 58 5 26 27 NA NA 8.0 57 5 27 28 23 13 12.0 67 5 28 29 45 252 14.9 81 5 29 30 115 223 5.7 79 5 30 31 37 279 7.4 76 5 31 32 NA 286 8.6 78 6 1 33 NA 287 9.7 74 6 2 34 NA 242 16.1 67 6 3 35 NA 186 9.2 84 6 4 36 NA 220 8.6 85 6 5 37 NA 264 14.3 79 6 6 38 29 127 9.7 82 6 7 39 NA 273 6.9 87 6 8 40 71 291 13.8 90 6 9 41 39 323 11.5 87 6 10 42 NA 259 10.9 93 6 11 43 NA 250 9.2 92 6 12 44 23 148 8.0 82 6 13 45 NA 332 13.8 80 6 14 46 NA 322 11.5 79 6 15 47 21 191 14.9 77 6 16 48 37 284 20.7 72 6 17 49 20 37 9.2 65 6 18 50 12 120 11.5 73 6 19 51 13 137 10.3 76 6 20 52 NA 150 6.3 77 6 21 53 NA 59 1.7 76 6 22 54 NA 91 4.6 76 6 23 55 NA 250 6.3 76 6 24 56 NA 135 8.0 75 6 25 57 NA 127 8.0 78 6 26 58 NA 47 10.3 73 6 27 59 NA 98 11.5 80 6 28 60 NA 31 14.9 77 6 29 61 NA 138 8.0 83 6 30 62 135 269 4.1 84 7 1 63 49 248 9.2 85 7 2 64 32 236 9.2 81 7 3 65 NA 101 10.9 84 7 4 66 64 175 4.6 83 7 5 67 40 314 10.9 83 7 6 68 77 276 5.1 88 7 7 69 97 267 6.3 92 7 8 70 97 272 5.7 92 7 9 71 85 175 7.4 89 7 10 72 NA 139 8.6 82 7 11 73 10 264 14.3 73 7 12 74 27 175 14.9 81 7 13 75 NA 291 14.9 91 7 14 76 7 48 14.3 80 7 15 77 48 260 6.9 81 7 16 78 35 274 10.3 82 7 17 79 61 285 6.3 84 7 18 80 79 187 5.1 87 7 19 81 63 220 11.5 85 7 20 82 16 7 6.9 74 7 21 83 NA 258 9.7 81 7 22 84 NA 295 11.5 82 7 23 85 80 294 8.6 86 7 24 86 108 223 8.0 85 7 25 87 20 81 8.6 82 7 26 88 52 82 12.0 86 7 27 89 82 213 7.4 88 7 28 90 50 275 7.4 86 7 29 91 64 253 7.4 83 7 30 92 59 254 9.2 81 7 31 93 39 83 6.9 81 8 1 94 9 24 13.8 81 8 2 95 16 77 7.4 82 8 3 96 78 NA 6.9 86 8 4 97 35 NA 7.4 85 8 5 98 66 NA 4.6 87 8 6 99 122 255 4.0 89 8 7 100 89 229 10.3 90 8 8 101 110 207 8.0 90 8 9 102 NA 222 8.6 92 8 10 103 NA 137 11.5 86 8 11 104 44 192 11.5 86 8 12 105 28 273 11.5 82 8 13 106 65 157 9.7 80 8 14 107 NA 64 11.5 79 8 15 108 22 71 10.3 77 8 16 109 59 51 6.3 79 8 17 110 23 115 7.4 76 8 18 111 31 244 10.9 78 8 19 112 44 190 10.3 78 8 20 113 21 259 15.5 77 8 21 114 9 36 14.3 72 8 22 115 NA 255 12.6 75 8 23 116 45 212 9.7 79 8 24 117 168 238 3.4 81 8 25 118 73 215 8.0 86 8 26 119 NA 153 5.7 88 8 27 120 76 203 9.7 97 8 28 121 118 225 2.3 94 8 29 122 84 237 6.3 96 8 30 123 85 188 6.3 94 8 31 124 96 167 6.9 91 9 1 125 78 197 5.1 92 9 2 126 73 183 2.8 93 9 3 127 91 189 4.6 93 9 4 128 47 95 7.4 87 9 5 129 32 92 15.5 84 9 6 130 20 252 10.9 80 9 7 131 23 220 10.3 78 9 8 132 21 230 10.9 75 9 9 133 24 259 9.7 73 9 10 134 44 236 14.9 81 9 11 135 21 259 15.5 76 9 12 136 28 238 6.3 77 9 13 137 9 24 10.9 71 9 14 138 13 112 11.5 71 9 15 139 46 237 6.9 78 9 16 140 18 224 13.8 67 9 17 141 13 27 10.3 76 9 18 142 24 238 10.3 68 9 19 143 16 201 8.0 82 9 20 144 13 238 12.6 64 9 21 145 23 14 9.2 71 9 22 146 36 139 10.3 81 9 23 147 7 49 10.3 69 9 24 148 14 20 16.6 63 9 25 149 30 193 6.9 70 9 26 150 NA 145 13.2 77 9 27 151 14 191 14.3 75 9 28 152 18 131 8.0 76 9 29 153 20 223 11.5 68 9 30 >
> heights <- tapply(airquality$Temp, airquality$Month, mean)
> barplot(heights)
> barplot(heights, + main="Mean Temp. by Month", + names.arg=c("May", "Jun", "Jul", "Aug", "Sep"), + ylab="Temp (deg. F)")
attach(airquality) heights <- tapply(Temp, Month, mean) install.packages("gplots") # for barplot2 function library(gplots) # load barplot2 function
tmean <- tapply(Temp, list(as.factor(Month)), mean) # mean for each month tsd <- tapply(Temp, list(as.factor(Month)),sd) # sd for each month tse <- tsd/sqrt(length(Temp)) # se for each month lower <- tmean - 1.96*tse upper <- tmean + 1.96*tse barplot2(heights, plot.ci=TRUE, ci.l=lower, ci.u=upper) barplot2(heights, plot.ci=TRUE, ci.l=lower, ci.u=upper, ylim=c(50,90), xpd=FALSE, main="Mean Temp. By Month", names.arg=c("May","Jun","Jul","Aug","Sep"), ylab="Temp (deg. F)")
barplot(c(3,5,4), col=c("red","white","blue"))
rel.hts <- rank(heights) / length(heights) grays <- gray(1 - rel.hts) barplot(heights, col=grays)
rel.hts <- (heights - min(heights)) / (max(heights) - min(heights)) grays <- gray(1 - rel.hts) barplot(heights, col=grays, ylim=c(50,90), xpd=FALSE, main="Mean Temp. By Month", names.arg=c("May", "Jun", "Jul", "Aug", "Sep"), ylab="Temp (deg. F)")
plot(pressure) plot(pressure, type="l")
> par(mfrow=c(2, 2), cex=0.6, mar=c(4, 4, 1, 1)) > y <- rnorm(20) > plot(y, type="p") > plot(y, type="l") > plot(y, type="b") > plot(y, type="h") >
x <- rnorm(10,sd=5,mean=20) y <- 2.5*x - 1.0 + rnorm(10,sd=9,mean=0) cor(x,y) [1] 0.7400576 plot(x,y,xlab="Independent",ylab="Dependent",main="Random Stuff") x1 <- runif(8,15,25) y1 <- 2.5*x1 - 1.0 + runif(8,-6,6) points(x1,y1,col=2)
> abline(v=0) # Vertical line at x = 0 > abline(h=0) # Horizontal line at y = 0
boxplot(x), where x is a vector of numeric values.
boxplot(Cars93$MPG.city)
boxplot(Cars93$MPG.city~Cars93$Origin)
> library(MASS) > UScereal mfr calories protein 100% Bran N 212.12121 12.1212121 All-Bran K 212.12121 12.1212121 All-Bran with Extra Fiber K 100.00000 8.0000000 Apple Cinnamon Cheerios G 146.66667 2.6666667 Apple Jacks K 110.00000 2.0000000 Basic 4 G 173.33333 4.0000000 Bran Chex R 134.32836 2.9850746 Bran Flakes P 134.32836 4.4776119 Cap'n'Crunch Q 160.00000 1.3333333 Cheerios G 88.00000 4.8000000 Cinnamon Toast Crunch G 160.00000 1.3333333 Clusters G 220.00000 6.0000000 Cocoa Puffs G 110.00000 1.0000000 Corn Chex R 110.00000 2.0000000 Corn Flakes K 100.00000 2.0000000 Corn Pops K 110.00000 1.0000000 Count Chocula G 110.00000 1.0000000 Cracklin' Oat Bran K 220.00000 6.0000000 Crispix K 110.00000 2.0000000 Crispy Wheat & Raisins G 133.33333 2.6666667 Double Chex R 133.33333 2.6666667 Froot Loops K 110.00000 2.0000000 Frosted Flakes K 146.66667 1.3333333 Frosted Mini-Wheats K 125.00000 3.7500000 Fruit & Fibre: Dates Walnuts and Oats P 179.10448 4.4776119 Fruitful Bran K 179.10448 4.4776119 Fruity Pebbles P 146.66667 1.3333333 Golden Crisp P 113.63636 2.2727273 Golden Grahams G 146.66667 1.3333333 Grape Nuts Flakes P 113.63636 3.4090909 Grape-Nuts P 440.00000 12.0000000 Great Grains Pecan P 363.63636 9.0909091 Honey Graham Ohs Q 120.00000 1.0000000 Honey Nut Cheerios G 146.66667 4.0000000 Honey-comb P 82.70677 0.7518797 Just Right Fruit & Nut K 186.66667 4.0000000 Kix G 73.33333 1.3333333 Life Q 149.25373 5.9701493 Lucky Charms G 110.00000 2.0000000 Mueslix Crispy Blend K 238.80597 4.4776119 Multi-Grain Cheerios G 100.00000 2.0000000 Nut&Honey Crunch K 179.10448 2.9850746 Nutri-Grain Almond-Raisin K 208.95522 4.4776119 Oatmeal Raisin Crisp G 260.00000 6.0000000 Post Nat. Raisin Bran P 179.10448 4.4776119 Product 19 K 100.00000 3.0000000 Puffed Rice Q 50.00000 1.0000000 Quaker Oat Squares Q 200.00000 8.0000000 Raisin Bran K 160.00000 4.0000000 Raisin Nut Bran G 200.00000 6.0000000 Raisin Squares K 180.00000 4.0000000 Rice Chex R 97.34513 0.8849558 Rice Krispies K 110.00000 2.0000000 Shredded Wheat 'n'Bran N 134.32836 4.4776119 Shredded Wheat spoon size N 134.32836 4.4776119 Smacks K 146.66667 2.6666667 Special K K 110.00000 6.0000000 Total Corn Flakes G 110.00000 2.0000000 Total Raisin Bran G 140.00000 3.0000000 Total Whole Grain G 100.00000 3.0000000 Triples G 146.66667 2.6666667 Trix G 110.00000 1.0000000 Wheat Chex R 149.25373 4.4776119 Wheaties G 100.00000 3.0000000 Wheaties Honey Gold G 146.66667 2.6666667 fat sodium fibre 100% Bran 3.0303030 393.93939 30.303030 All-Bran 3.0303030 787.87879 27.272727 All-Bran with Extra Fiber 0.0000000 280.00000 28.000000 Apple Cinnamon Cheerios 2.6666667 240.00000 2.000000 Apple Jacks 0.0000000 125.00000 1.000000 Basic 4 2.6666667 280.00000 2.666667 Bran Chex 1.4925373 298.50746 5.970149 Bran Flakes 0.0000000 313.43284 7.462687 Cap'n'Crunch 2.6666667 293.33333 0.000000 Cheerios 1.6000000 232.00000 1.600000 Cinnamon Toast Crunch 4.0000000 280.00000 0.000000 Clusters 4.0000000 280.00000 4.000000 Cocoa Puffs 1.0000000 180.00000 0.000000 Corn Chex 0.0000000 280.00000 0.000000 Corn Flakes 0.0000000 290.00000 1.000000 Corn Pops 0.0000000 90.00000 1.000000 Count Chocula 1.0000000 180.00000 0.000000 Cracklin' Oat Bran 6.0000000 280.00000 8.000000 Crispix 0.0000000 220.00000 1.000000 Crispy Wheat & Raisins 1.3333333 186.66667 2.666667 Double Chex 0.0000000 253.33333 1.333333 Froot Loops 1.0000000 125.00000 1.000000 Frosted Flakes 0.0000000 266.66667 1.333333 Frosted Mini-Wheats 0.0000000 0.00000 3.750000 Fruit & Fibre: Dates Walnuts and Oats 2.9850746 238.80597 7.462687 Fruitful Bran 0.0000000 358.20896 7.462687 Fruity Pebbles 1.3333333 180.00000 0.000000 Golden Crisp 0.0000000 51.13636 0.000000 Golden Grahams 1.3333333 373.33333 0.000000 Grape Nuts Flakes 1.1363636 159.09091 3.409091 Grape-Nuts 0.0000000 680.00000 12.000000 Great Grains Pecan 9.0909091 227.27273 9.090909 Honey Graham Ohs 2.0000000 220.00000 1.000000 Honey Nut Cheerios 1.3333333 333.33333 2.000000 Honey-comb 0.0000000 135.33835 0.000000 Just Right Fruit & Nut 1.3333333 226.66667 2.666667 Kix 0.6666667 173.33333 0.000000 Life 2.9850746 223.88060 2.985075 Lucky Charms 1.0000000 180.00000 0.000000 Mueslix Crispy Blend 2.9850746 223.88060 4.477612 Multi-Grain Cheerios 1.0000000 220.00000 2.000000 Nut&Honey Crunch 1.4925373 283.58209 0.000000 Nutri-Grain Almond-Raisin 2.9850746 328.35821 4.477612 Oatmeal Raisin Crisp 4.0000000 340.00000 3.000000 Post Nat. Raisin Bran 1.4925373 298.50746 8.955224 Product 19 0.0000000 320.00000 1.000000 Puffed Rice 0.0000000 0.00000 0.000000 Quaker Oat Squares 2.0000000 270.00000 4.000000 Raisin Bran 1.3333333 280.00000 6.666667 Raisin Nut Bran 4.0000000 280.00000 5.000000 Raisin Squares 0.0000000 0.00000 4.000000 Rice Chex 0.0000000 212.38938 0.000000 Rice Krispies 0.0000000 290.00000 0.000000 Shredded Wheat 'n'Bran 0.0000000 0.00000 5.970149 Shredded Wheat spoon size 0.0000000 0.00000 4.477612 Smacks 1.3333333 93.33333 1.333333 Special K 0.0000000 230.00000 1.000000 Total Corn Flakes 1.0000000 200.00000 0.000000 Total Raisin Bran 1.0000000 190.00000 4.000000 Total Whole Grain 1.0000000 200.00000 3.000000 Triples 1.3333333 333.33333 0.000000 Trix 1.0000000 140.00000 0.000000 Wheat Chex 1.4925373 343.28358 4.477612 Wheaties 1.0000000 200.00000 3.000000 Wheaties Honey Gold 1.3333333 266.66667 1.333333 carbo sugars shelf 100% Bran 15.15152 18.181818 3 All-Bran 21.21212 15.151515 3 All-Bran with Extra Fiber 16.00000 0.000000 3 Apple Cinnamon Cheerios 14.00000 13.333333 1 Apple Jacks 11.00000 14.000000 2 Basic 4 24.00000 10.666667 3 Bran Chex 22.38806 8.955224 1 Bran Flakes 19.40299 7.462687 3 Cap'n'Crunch 16.00000 16.000000 2 Cheerios 13.60000 0.800000 1 Cinnamon Toast Crunch 17.33333 12.000000 2 Clusters 26.00000 14.000000 3 Cocoa Puffs 12.00000 13.000000 2 Corn Chex 22.00000 3.000000 1 Corn Flakes 21.00000 2.000000 1 Corn Pops 13.00000 12.000000 2 Count Chocula 12.00000 13.000000 2 Cracklin' Oat Bran 20.00000 14.000000 3 Crispix 21.00000 3.000000 3 Crispy Wheat & Raisins 14.66667 13.333333 3 Double Chex 24.00000 6.666667 3 Froot Loops 11.00000 13.000000 2 Frosted Flakes 18.66667 14.666667 1 Frosted Mini-Wheats 17.50000 8.750000 2 Fruit & Fibre: Dates Walnuts and Oats 17.91045 14.925373 3 Fruitful Bran 20.89552 17.910448 3 Fruity Pebbles 17.33333 16.000000 2 Golden Crisp 12.50000 17.045455 1 Golden Grahams 20.00000 12.000000 2 Grape Nuts Flakes 17.04545 5.681818 3 Grape-Nuts 68.00000 12.000000 3 Great Grains Pecan 39.39394 12.121212 3 Honey Graham Ohs 12.00000 11.000000 2 Honey Nut Cheerios 15.33333 13.333333 1 Honey-comb 10.52632 8.270677 1 Just Right Fruit & Nut 26.66667 12.000000 3 Kix 14.00000 2.000000 2 Life 17.91045 8.955224 2 Lucky Charms 12.00000 12.000000 2 Mueslix Crispy Blend 25.37313 19.402985 3 Multi-Grain Cheerios 15.00000 6.000000 1 Nut&Honey Crunch 22.38806 13.432836 2 Nutri-Grain Almond-Raisin 31.34328 10.447761 3 Oatmeal Raisin Crisp 27.00000 20.000000 3 Post Nat. Raisin Bran 16.41791 20.895522 3 Product 19 20.00000 3.000000 3 Puffed Rice 13.00000 0.000000 3 Quaker Oat Squares 28.00000 12.000000 3 Raisin Bran 18.66667 16.000000 2 Raisin Nut Bran 21.00000 16.000000 3 Raisin Squares 30.00000 12.000000 3 Rice Chex 20.35398 1.769912 1 Rice Krispies 22.00000 3.000000 1 Shredded Wheat 'n'Bran 28.35821 0.000000 1 Shredded Wheat spoon size 29.85075 0.000000 1 Smacks 12.00000 20.000000 2 Special K 16.00000 3.000000 1 Total Corn Flakes 21.00000 3.000000 3 Total Raisin Bran 15.00000 14.000000 3 Total Whole Grain 16.00000 3.000000 3 Triples 28.00000 4.000000 3 Trix 13.00000 12.000000 2 Wheat Chex 25.37313 4.477612 1 Wheaties 17.00000 3.000000 1 Wheaties Honey Gold 21.33333 10.666667 1 potassium vitamins 100% Bran 848.48485 enriched All-Bran 969.69697 enriched All-Bran with Extra Fiber 660.00000 enriched Apple Cinnamon Cheerios 93.33333 enriched Apple Jacks 30.00000 enriched Basic 4 133.33333 enriched Bran Chex 186.56716 enriched Bran Flakes 283.58209 enriched Cap'n'Crunch 46.66667 enriched Cheerios 84.00000 enriched Cinnamon Toast Crunch 60.00000 enriched Clusters 210.00000 enriched Cocoa Puffs 55.00000 enriched Corn Chex 25.00000 enriched Corn Flakes 35.00000 enriched Corn Pops 20.00000 enriched Count Chocula 65.00000 enriched Cracklin' Oat Bran 320.00000 enriched Crispix 30.00000 enriched Crispy Wheat & Raisins 160.00000 enriched Double Chex 106.66667 enriched Froot Loops 30.00000 enriched Frosted Flakes 33.33333 enriched Frosted Mini-Wheats 125.00000 enriched Fruit & Fibre: Dates Walnuts and Oats 298.50746 enriched Fruitful Bran 283.58209 enriched Fruity Pebbles 33.33333 enriched Golden Crisp 45.45455 enriched Golden Grahams 60.00000 enriched Grape Nuts Flakes 96.59091 enriched Grape-Nuts 360.00000 enriched Great Grains Pecan 303.03030 enriched Honey Graham Ohs 45.00000 enriched Honey Nut Cheerios 120.00000 enriched Honey-comb 26.31579 enriched Just Right Fruit & Nut 126.66667 100% Kix 26.66667 enriched Life 141.79104 enriched Lucky Charms 55.00000 enriched Mueslix Crispy Blend 238.80597 enriched Multi-Grain Cheerios 90.00000 enriched Nut&Honey Crunch 59.70149 enriched Nutri-Grain Almond-Raisin 194.02985 enriched Oatmeal Raisin Crisp 240.00000 enriched Post Nat. Raisin Bran 388.05970 enriched Product 19 45.00000 100% Puffed Rice 15.00000 none Quaker Oat Squares 220.00000 enriched Raisin Bran 320.00000 enriched Raisin Nut Bran 280.00000 enriched Raisin Squares 220.00000 enriched Rice Chex 26.54867 enriched Rice Krispies 35.00000 enriched Shredded Wheat 'n'Bran 208.95522 none Shredded Wheat spoon size 179.10448 none Smacks 53.33333 enriched Special K 55.00000 enriched Total Corn Flakes 35.00000 100% Total Raisin Bran 230.00000 100% Total Whole Grain 110.00000 100% Triples 80.00000 enriched Trix 25.00000 enriched Wheat Chex 171.64179 enriched Wheaties 110.00000 enriched Wheaties Honey Gold 80.00000 enriched >
boxplot(sugars ~ shelf, data=UScereal) boxplot(sugars ~ shelf, data=UScereal, main="Sugar Content by Shelf", xlab="Shelf", ylab="Sugar (grams per portion)")
Use hist(x), where x is a vector of numeric values.
data(Cars93, package="MASS") hist(Cars93$MPG.city) hist(Cars93$MPG.city, 20) hist(Cars93$MPG.city, 20, main="City MPG (1993)", xlab="MPG")
data(Cars93, package="MASS") qqnorm(Cars93$Price, main="Q-Q Plot: Price") qqline(Cars93$Price)
data(Cars93, package="MASS") qqnorm(log(Cars93$Price), main="Q-Q Plot: log(Price)") qqline(log(Cars93$Price))
# # Comment: # # Examples of the use of standard high-level plotting functions. # # In each case, extra output is also added using low-level # plotting functions. # par(mfrow=c(3, 2)) # Scatterplot x <- c(0.5, 2, 4, 8, 12, 16) y1 <- c(1, 1.3, 1.9, 3.4, 3.9, 4.8) y2 <- c(4, .8, .5, .45, .4, .3) par(las=1, mar=c(4, 4, 2, 4)) plot.new() plot.window(range(x), c(0, 6)) lines(x, y1) lines(x, y2) points(x, y1, pch=16, cex=2) points(x, y2, pch=21, bg="white", cex=2) par(col="grey50", fg="grey50", col.axis="grey50") axis(1, at=seq(0, 16, 4)) axis(2, at=seq(0, 6, 2)) axis(4, at=seq(0, 6, 2)) box(bty="u") mtext("Travel Time (s)", side=1, line=2, cex=0.8) mtext("Responses per Travel", side=2, line=2, las=0, cex=0.8) mtext("Responses per Second", side=4, line=2, las=0, cex=0.8) text(4, 5, "Bird 131") par(mar=c(5.1, 4.1, 4.1, 2.1), col="black", fg="black", col.axis="black") # Histogram # Random data Y <- rnorm(50) # Make sure no Y exceed [-3.5, 3.5] Y[Y < -3.5 | Y > 3.5] <- NA x <- seq(-3.5, 3.5, .1) dn <- dnorm(x) par(mar=c(4.5, 4.1, 3.1, 0)) hist(Y, breaks=seq(-3.5, 3.5), ylim=c(0, 0.5), col="grey80", freq=FALSE) lines(x, dnorm(x), lwd=2) par(mar=c(5.1, 4.1, 4.1, 2.1)) # Barplot # Modified from example(barplot) par(mar=c(2, 3.1, 2, 2.1)) midpts <- barplot(VADeaths, col=grey(0.5 + 1:5/12), names=rep("", 4)) mtext(sub(" ", "\n", colnames(VADeaths)), at=midpts, side=1, line=0.5, cex=0.5) text(rep(midpts, each=5), apply(VADeaths, 2, cumsum) - VADeaths/2, VADeaths, col=rep(c("white", "black"), times=2:3, cex=0.8)) par(mar=c(5.1, 4.1, 4.1, 2.1)) # Boxplot # Modified example(boxplot) - itself from suggestion by Roger Bivand par(mar=c(3, 4.1, 2, 0)) boxplot(len ~ dose, data = ToothGrowth, boxwex = 0.25, at = 1:3 - 0.2, subset= supp == "VC", col="grey90", xlab="", ylab="tooth length", ylim=c(0,35)) mtext("Vitamin C dose (mg)", side=1, line=2.5, cex=0.8) boxplot(len ~ dose, data = ToothGrowth, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2, subset= supp == "OJ", col="grey70") legend(1.5, 9, c("Ascorbic acid", "Orange juice"), bty="n", fill = c("grey90", "grey70")) par(mar=c(5.1, 4.1, 4.1, 2.1)) # Persp # Almost exactly example(persp) x <- seq(-10, 10, length= 30) y <- x f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r } z <- outer(x, y, f) z[is.na(z)] <- 1 # 0.5 to include z axis label par(mar=c(0, 0.5, 0, 0), lwd=0.1) persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "grey80") par(mar=c(5.1, 4.1, 4.1, 2.1), lwd=1) # Piechart # Example 4 from help(pie) par(mar=c(0, 2, 1, 2), xpd=FALSE, cex=0.5) pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12) names(pie.sales) <- c("Blueberry", "Cherry", "Apple", "Boston Cream", "Other", "Vanilla") pie(pie.sales, col = gray(seq(0.4,1.0,length=6)))
# # Comment: # # A bit of mucking around is required to get the second (whole-world) # map positioned correctly; this provides an example of calling a # plotting function to perform calculations but do no drawing (see the # second call to the map() function). # # Makes use of the "maps" and "mapproj" packages to draw the maps. # library(maps) par(mar=rep(0, 4)) map("nz", fill=TRUE, col="grey80") points(174.75, -36.87, pch=16, cex=2) arrows(172, -36.87, 174, -36.87, lwd=3) text(172, -36.87, "Auckland ", adj=1, cex=2) # mini world map as guide maplocs <- map(projection="sp_mercator", wrap=TRUE, lwd=0.1, col="grey", ylim=c(-60, 75), interior=FALSE, orientation=c(90, 180, 0), add=TRUE, plot=FALSE) xrange <- range(maplocs$x, na.rm=TRUE) yrange <- range(maplocs$y, na.rm=TRUE) aspect <- abs(diff(yrange))/abs(diff(xrange)) # customised to 6.5 by 4.5 figure size par(fig=c(0.99 - 0.5, 0.99, 0.01, 0.01 + 0.5*aspect*4.5/6.5), mar=rep(0, 4), new=TRUE) plot.new() plot.window(xlim=xrange, ylim=yrange) map(projection="sp_mercator", wrap=TRUE, lwd=0.1, ylim=c(-60, 75), interior=FALSE, orientation=c(90, 180, 0), add=TRUE) symbols(-.13, -0.8, circles=1, inches=0.1, add=TRUE)
par(mfrow=c(2, 2)) z <- 2 * volcano # Exaggerate the relief x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N) y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W) # Don't draw the grid lines : border = NA par(mar=rep(0, 4)) persp(x, y, z, theta = 135, phi = 30, col = "light grey", scale = FALSE, ltheta = -120, shade = 0.75, border = NA, box = FALSE) mtext("persp()", side=3, line=-2) par(mar=c(3, 3, 2, 0.5)) # Note that example(trees) shows more sensible plots! N <- nrow(trees) attach(trees) # Girth is diameter in inches symbols(Height, Volume, circles=Girth/24, inches=FALSE, main="", xlab="", ylab="", bg=grey(Girth/max(Girth))) mtext("symbols()", side=3, line=0.5) par(mar=rep(0.5, 4)) contour(x, y, z, asp=1, labcex=0.35, axes=FALSE) rect(0, 0, 870, 620) mtext("contour()", side=3, line=-1.5) image(x, y, z, asp=1, col=grey(0.5 + 1:12/24), xlab="", ylab="", axes=FALSE) rect(min(x)-5, min(y)-5, max(x)+5, max(y)+5) mtext("image()", side=3, line=-1.5)