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Social network analysis is a large and growing body of research on the measurement and analysis of relational
structure. Here, we review the fundamental concepts of network analysis, as well as a range of methods currently
used in the field. Issues pertaining to data collection, analysis of single networks, network comparison, and
analysis of individual-level covariates are discussed, and a number of suggestions are made for avoiding common
pitfalls in the application of network methods to substantive questions.
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Introduction

The social network field is an interdisciplinary research
programme which seeks to predict the structure of relation-
ships among social entities, as well as the impact of said
structure on other social phenomena. The substantive ele-
ments of this programme are built around a shared ‘core’ of
concepts and methods for the measurement, representation,
and analysis of social structure. These techniques (jointly
referred to as the methods of social network analysis) are
applicable to a wide range of substantive domains, ranging
from the analysis of concepts within mental models
(Wegner, 1995; Carley, 1997) to the study of war between
nations (Wimmer & Min, 2006). For psychologists, social
network analysis provides a powerful set of tools for
describing and modelling the relational context in which
behaviour takes place, as well as the relational dimensions
of that behaviour. Network methods can also be applied to
‘intrapersonal’ networks such as the above-mentioned asso-
ciation among concepts, as well as developmental phenom-
ena such as the structure of individual life histories (Butts &
Pixley, 2004). While a number of introductory references to
the field are available (which will be discussed below), the
wide range of concepts and methods used can be daunting
to the newcomer. Likewise, the rapid pace of change within
the field means that many recent developments (particularly
in the statistical analysis of network data) are unevenly
covered in the standard references. The aim of the present
paper is to rectify this situation to some extent, by supply-
ing an overview of the fundamental concepts and methods
of social network analysis. Attention is given to problems
of network definition and data collection, as well as data
analysis per se, as these issues are particularly relevant to

those seeking to add a structural component to their own
work. Although many classical methods are discussed,
more emphasis is placed on recent, statistical approaches to
network analysis, as these are somewhat less well covered
by existing reviews. Finally, an effort has been made
throughout to highlight common pitfalls which can await
the unwary researcher, and to suggest how these may be
avoided. The result, it is hoped, is a basic reference that
offers a rigorous treatment of essential concepts and
methods, without assuming prior background in this area.

The overall structure of this paper is as follows. After a
brief comment on some things which are not discussed here
(the field being too large to admit treatment in a single
paper), an overview of core concepts and notation is pre-
sented. Following this is a discussion of network data,
including basic issues involving representation, boundary
definition, sampling schemes, instruments, and visualiza-
tion. I then proceed to an overview of common approaches
to the measurement and modelling of structural properties
within single networks, followed by sections on methods
for network comparison and modelling of individual
attributes. Finally, I conclude with a discussion of some
additional issues which affect the use of network analysis in
practical settings.

Topics not discussed

The field of social network analysis is broad and growing,
and new methods and approaches are constantly in devel-
opment. As such, it is impossible to cover the entire
network analysis literature in one article. Among the topics
that are not discussed here are methods for the identifica-
tion of cohesive subgroups, blockmodelling and equiva-
lence analysis, signed graphs and structural balance,
dynamic network analysis, methods for the analysis of two-
mode (e.g. person by event) data, and a host of special-
purpose methods. Likewise, for topics that are covered
here, limitations of space require judicious selection from
the set of available techniques. For readers desiring a more
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extensive treatment, excellent book-length reviews of
‘classic’ network methods can be found in the volumes by
Wasserman and Faust (1994) and Brandes and Erlebach
(2005). Some more recent innovations can be found in
Carrington, Scott, and Wasserman (2005) and Doreian, Bat-
agelj, and Ferlioj (2005), while Scott (1991) and Degenne
and Forsé (1999) serve as accessible introductions to the
field. For those looking to keep abreast of the latest devel-
opments in network analysis, journals such as Social Net-
works, the Journal of Mathematical Sociology, the Journal
of Social Structure, and Sociological Methodology fre-
quently publish methodological work in this area. Due to
the slowness of the academic publishing process, a growing
(if not always welcomed) trend is the use of technical report
and working paper series as an initial mode of informa-
tion dissemination. While these sources are rarely peer
reviewed, they frequently contain research which is
1–3 years ahead of that contained in the journals. Caution
should be used when drawing upon such sources, but they
can be a valuable resource for those seeking research on the
cutting edge.

Notation and core concepts

Because structural concepts are not well described using
natural language, scientists in the social network field use
specialized jargon and notation. Much of this is borrowed
from graph theory, the branch of mathematics which is
concerned with discrete relational structures (for an over-
view, see West, 1996 or Bollobás, 1998). Indeed, the close
relationship between graph theory and the study of social
networks is much like the relationship between the theory
of differential equations and the study of classical mechan-
ics:1 in both cases, the mathematical literature provides a
formal substrate for the associated scientific work, and
much of the theoretical leverage in both scientific fields
comes from judicious application of results from their asso-
ciated mathematical subdisciplines. While the graph theo-
retical formalisms used within the social network field can
seem daunting to the newcomer, the core concepts and
notation are easily mastered. We begin, therefore, by
reviewing some of these elements before advancing to a
discussion of network data and methods.

A social network, as we shall here use the term, consists
of a set of ‘entities’, together with a ‘relation’ on those
entities. For the moment, we are unconcerned with the
specific nature of the entities in question; persons, groups,
or organizations may be objects of study, as may more
exotic entities such as texts, artifacts, or even concepts. We
do assume, however, that the entities which form our
network are distinct from one another, can be uniquely
identified, and are finite in number. (Extensions to incorpo-
rate more general cases are possible, but will not be treated
here.) Likewise, we constrain the set of potential relations

to be studied not by content, but by their formal properties.
Specifically, we require that relations be defined on pairs of
entities, and that they admit a dichotomous qualitative dis-
tinction between relationships which are present and those
which are absent. A wide range of relations can be cast in
this form, including attributions of trust or friendship, inter-
personal communication, agonistic acts, and even binary
entailments (e.g. within mental models). Relations which
do not satisfy these constraints include those which neces-
sarily involve three or more entities at once (e.g. the respec-
tive A-B-O or P-O-X triads of Newcomb (1953) and Heider
(1946)), or those for which the presence/absence of a rela-
tion is not a useful distinction (e.g. spatial proximity). For-
malisms which can accommodate these more general cases
exist; see Wasserman and Faust (1994) for some examples.

Within the above constraints, we may represent social
relations as graphs. A graph is a relational structure con-
sisting of two elements: a set of entities (called vertices or
nodes), and a set of entity pairs indicating ties (called
edges). Formally, we represent such an object as G = (V, E),
where V is the vertex set and E is the edge set. Where
multiple graphs are involved, it can sometimes be useful to
treat V and E as operators: thus, V(G) is the vertex set of G,
and E(G) is the edge set of G. When used alone (as V and
E) these elements are tacitly assumed to pertain to the graph
under study. We represent the number of elements in a
given set by the cardinality operator, |·|, and hence |V| and
|E| are the numbers of vertices and edges in G, respectively.
The number of vertices in a given graph is known as its
order or size, and will be denoted here by n = |V| where
there is no danger of confusion. We will also use simple set
theoretical notation to describe various collections of
objects throughout this paper (as is standard in the network
literature). In particular, {a, b, c, . . .} refers to the set
containing the elements a, b, c etc., and (a, b, c . . .) refers
to an ordered set (or tuple) of the same objects. Note that
the order of elements matters only in the latter case; thus {a,
b} = {b, a}, but (a, b) � (b, a). Intersections and unions of
sets are designated via ∩ and ∪, respectively, so that, for
example, A ∪ B is the union of sets A and B. Setwise
subtraction is denoted via the backslash operator, so that
A\B is the set formed by removing the elements of B from
A. Subsets are denoted by ⊂ (for proper subsets) and ⊆ (for
general subsets), such that A ⊂ B means that A is a proper
subset of B. Set membership is similarly denoted by ∈, with
a ∈ A indicating that object a belongs to set A. Finally, we
use the existential ($, reading as ‘there exists’) and univer-
sal (", reading as ‘for all’) quantifiers in making statements
about objects and sets. While this notation may be unfamil-
iar to some readers, it provides a precise and compact
language for describing structure which cannot be obtained
using natural language. This notation is frequently encoun-
tered within the network literature, particularly in more
technical papers.
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Returning to the matter of graphs, we note that they
appear in several varieties. These varieties are defined by
the type of relationships they represent, as reflected in the
content of their edge sets. Graphs which represent dyadic
(i.e. pairwise) relations which are intrinsically symmetric
(i.e. no distinction can be drawn between the ‘sender’ and
the ‘receiver’ of the relation) are said to be undirected (or
non-directed), and have edge sets which consist of unor-
dered pairs of vertices. For these relations, we express this
principle formally via the statement that {v, v�} ∈ E if and
only if (‘iff’) vertex v is tied (or adjacent) to vertex v�
(where v, v� ∈ V). By contrast, other graphs represent
relations which are not inherently symmetric, in the sense
that each relationship involves distinct ‘sender’ and
‘receiver’ roles. These graphs (which are called directed
graphs or digraphs) have edge sets which are composed of
ordered pairs of vertices. Formally, we require that (v, v�) ∈
E iff v sends a tie to v�. Note that, as shorthand, it is
sometimes useful to use arrow notation to denote ties, such
that v → v� should be read as ‘v sends a tie to v�’ (or,
equivalently, v is adjacent to v�). An edge from a vertex to
itself is a special type of edge known as a loop, and may or
may not be meaningful for a particular relation. Relations
which are irreflexive (i.e. have no loops) and which are not
multiplex (i.e. do not allow duplicate edges) are said to be
simple. Graphs used here will be presumed to be simple
unless otherwise indicated.

When working with graphs, it is often useful to be able to
speak of smaller elements within a larger whole. In this
vein, we define a subgraph to be a graph whose elements
are subsets of a larger graph; formally, H is a subgraph of G
(denoted H ⊆ G) iff V(H) ⊆ V(G) and E(H) ⊆ E(G). One
important type of subgraph is formed by taking a set of
vertices, together with all edges between those vertices. For
vertex set S ⊆ V, we refer to this as the subgraph induced by
S, or G[S]. Another important type of substructure is the
neighbourhood, which consists of all vertices which are
adjacent to a particular vertex. For simple graph G, N(v) ≡
{v� ∈ V: {v, v�} ∈ E} denotes the neighbourhood of vertex
v (where ≡ should be read as ‘is defined as’). The directed
case obviously forces the distinction between neighbours to
whom ties are directed (out-neighbours) and neighbours
from whom ties are received (in-neighbours). These are
denoted, respectively, as N+(v) ≡ {v� ∈ V: (v, v�) ∈ E} and
N-(v) ≡ {v� ∈ V: (v�, v) ∈ E}, with the joint neighbourhood
N(v) ≡ N+(v) ∪ N-(v) being the union of the two. When
discussing neighbourhoods, we often refer to the focal
vertex (v) as ego with neighbouring vertices (v� ∈ N(v))
referred to as alters; indeed, this language may be used
whenever we consider a particular individual and those who
relate to him or her. Two vertices with identical neighbour-
hoods are said to be copies of each other, or (as it is better
known in the social sciences) are said to be structurally
equivalent (Lorrain & White, 1971).2 Combining ideas, we

also note that G[v� ∪ N(v)] is a succinct way of referring to
the subgraph of G formed by selecting v and its neighbours
along with all edges among them; this structure (called an
egocentric network) will surface frequently throughout the
present paper.

While graphs derived from empirical data are frequently
complex, there are a number of useful graph theoretical
terms for simple structures which are encountered (if only
as subgraphs) in various settings. The simplest of these is
the empty graph (or null graph), which consists of a vertex
set with no edges. The null graph on n vertices is tradition-
ally denoted Nn, and has the trivial structure Nn = (V, ∅)
where ∅ denotes the null set. A vertex whose neighbour-
hood is empty is referred to as an isolate and, hence, the
null graph can be thought of as a graph that contains
nothing but isolates. The corresponding opposite of the null
graph is the complete graph or clique on n vertices, denoted
Kn. Kn consists of n vertices, together with all possible ties
among them (discounting loops, if the relation in question
is simple). Nn and Kn are said to be complements of each
other, in that an edge exists in one graph iff that edge does
not exist in the other. More generally, the complement of G
(denoted Ḡ) is defined as the graph on V (G) such that v →
v� in Ḡ iff v v→ ′/ in G. Finally, another ‘special’ graph of
which it is useful to be aware is the star, which consists of
one vertex with ties to all others, and no other edges. The
star on n vertices is denoted K1,n-1, reflecting the fact that the
star is a complete bipartite graph. A graph is said to be
bipartite if its vertices can be divided into two non-empty
disjoint sets, A and B, such that G[A] and G[B] are both null
graphs. A complete bipartite graph is one in which all
possible between-set edges exist but (from the definition of
a bipartite graph) no within-set edges exist, and is denoted
Ka,b (where a and b are the cardinalities of A and B, respec-
tively). It follows therefore that a graph with one vertex
which is adjacent to all others (none of which are adjacent
to each other) can be thought of as a complete bipartite
graph in which one of the two vertex sets has only one
member (and hence a K1,n-1).

Although idealized structures such as the above are
helpful when describing graphs, there are also other prop-
erties for which special terminology is useful. In many
cases, we will be interested in determining whether one
vertex could reach another by traversing a series of edges
within the network. A sequence of distinct, serially adjacent
vertices v, . . . , v� together with their included edges is
called a path (or a directed path, if G is directed), and the
existence of a path from v to v� implies that the two vertices
are in some way connected. In an undirected graph, there is
only one form of connectedness: v and v� are connected iff
there exists some v, v� path in G. In directed graphs, by
contrast, several distinct notions of connectedness are pos-
sible. At the lowest level, we may consider v and v� to be
connected iff there exists a sequence of vertices from v to v�
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such that, for any adjacent pair (v�, v′′′) in the sequence,
v v′′ ′′′→ and/or v v′′′ ′′→ . Such a structure is called a
semipath, and two vertices joined by a semipath are said to
be weakly (or semipath) connected. A slightly more strin-
gent condition is for there to exist either a directed path
from v to v� or such a path from v� to v (but possibly not
both). This does require a sequence of vertices which can be
traversed in order to get from one end of the path to the
other, but this condition is not required to hold in both
directions. A vertex pair satisfying this condition is said to
be unilaterally connected. A criterion which is more strin-
gent yet is to require that there exists a directed path from
v to v� and that there exists a directed path from v� to v;
vertex pairs for which this condition is met are said to be
strongly connected. Finally (and most stringently of all), we
may require not only the existence of directed v, v� and v�,
v paths, but also that these paths traverse the same interme-
diate vertices. Vertex pairs satisfying this reciprocal condi-
tion are said to be recursively connected. This same
terminology can be extended to describe larger sets of ver-
tices as well. In particular, a vertex set is said to be con-
nected if all pairs of vertices within it are connected (with
the type of connectivity being specified in the directed
case). Likewise, a graph G is said to be connected if all
pairs of vertices in V are connected. Specific types of con-
nectivity (weak, unilateral etc.) are again relevant in the
directed case, with strong connectivity being the conven-
tional ‘default’ assumption if no qualifier is given. A
maximal set of connected vertices in G is said to form a
component of G, with G as a whole being connected iff it
has only one component. Components and connectedness
play an important part in the study of phenomena such as
information transmission, and will be invoked here on mul-
tiple occasions.

Several additional path-related concepts also bear men-
tioning. A geodesic from v to v� is a v, v� path of minimal
length; the length of such a path is called the geodesic
distance (or simply distance) from v to v�. The path concept
may also be generalized in various ways, some of which are
important for our present purposes. A sequence of distinct,
serially adjacent vertices which both begins and ends with
vertex v (together with its included edges) is called a cycle;
this is directly analogous to a path, save in that the start and
end-points are the same. Both the path and the cycle are
special cases of the ‘walk’, which is simply a sequence of
serially adjacent vertices together with their included
edges. Unlike a path, a walk may visit a given edge or
vertex multiple times and, hence, can be of any length. A
path, by contrast, must have a length of, at most, n - 1, as
vertices within a path may not be repeated. A path of length
n - 1 must touch all vertices, and is known as a spanning
(or Hamiltonian) path. More generally, any subgraph of G
which contains all elements of V is known as a spanning
subgraph, with spanning paths, walks, cycles etc. being

special cases. Interestingly, for many classes of graphs, the
average geodesic distance among connected vertices (or
mean geodesic distance) can be very small compared to the
length of a spanning path - this result lies behind the ‘small
world’ phenomenon famously studied by Travers and
Milgram (1969), Pool and Kochen (1979), Watts and Stro-
gatz (1998), and others.

Before concluding this section, I note some additional
concepts which are subtle but important for what follows. A
one-to-one function � which takes V onto itself is said to be
a permutation or labelling function for V. A relabelling or
graph permutation of G is then a transformation of G which
relabels its vertex set by �, i.e. (in a slight abuse of notation)
�(G) = (�(V), E). A permutation which preserves the adja-
cency structure of G is said to be an automorphism of G. �
is hence an automorphism iff �(G) = G. Relatedly, two
distinct graphs G and G� on vertex set V are said to be
isomorphic iff there exists a permutation � such that
�(G) = G�. This is denoted G � G�, with � read as ‘is
isomorphic to’. Isomorphic graphs are structurally identi-
cal, differing only in the identity of their respective vertices.
A maximal set of mutually isomorphic graphs is referred to
as an isomorphism class, and each graph within the set can
be converted into any other by means of a graph permuta-
tion. Another transformation-related concept is the graph
minor, which is a graph formed by merging (or condensing)
adjacent vertices of G. In particular, let v, v� be adjacent
vertices in G, and form the graph G� = (V�, E�) by letting
V� = V\v and setting E� such that N(v�) = (N(v�) ∪ N(v))\v.
Then, G� is a graph minor of G. Furthermore, if G� is a
graph minor of G� and G� is a graph minor of G, then G� is
said to be a graph minor of G as well. Thus, a graph formed
by condensing any sequence of vertices of G is a graph
minor of G. As we shall see, graph minors are useful for
defining the number of ‘levels’ in a hierarchical structure, a
substantively important property of directed graphs. For
further reading on graph minors, isomorphism, or the other
concepts discussed here, West (1996) provides an acces-
sible introduction.

Finally, I note that the above concepts may be expanded
in various ways to accommodate more general relational
structures. Of particular importance are valued edges (i.e.
edges which are associated with the value of a variable such
as frequency, tie strength, etc.) and vertex attributes (some-
times called ‘colours’ in the graph-theoretical literature).
Edge values and vertex attributes are frequently encoun-
tered in empirical network data, as I shall discuss below.

Network data

Before considering how networks may be analyzed, I first
begin with a general discussion of network data. As
network data are represented in a different form from the
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matrix/vector format familiar to most social scientists, I
begin with a brief discussion of how such data may be
numerically represented. This is useful both notationally
(for the discussion which follows) and also pragmatically,
as most available network analysis tools assume some basic
familiarity with the representation of network data. From
this, I turn to a discussion of network boundary definition,
the most fundamental issue to be determined when creating
or assessing a network study. I also say a few words about
the collection of network data (designs and instruments),
with particular emphasis on the collection of data on the
connections between individuals. Finally, I provide some
background on the visualization of network data, a problem
which has been foundational to the development of modern
network analysis (Freeman, 2004).

Representation

Network data can be represented in a number of ways,
depending upon what is most convenient for the application
at hand. We have already seen that networks can be repre-
sented using graph theoretical notation, and I shall use this
representation extensively in more conceptual discussions.
For practical purposes, however, network data are more
often represented in other ways. The most common data
representation in empirical contexts is the adjacency
matrix, an n ¥ n matrix whose ijth cell is equal to 1 if vertex
i sends an edge to vertex j, and 0 otherwise. For an undi-
rected graph G with adjacency matrix A, it is clear that
Aij = Aji (i.e. the adjacency matrix must be symmetric). This
is not generally true if G is a digraph. If G is simple (i.e. G
has no loops), then all elements of the diagonal of A will be
identically 0. Otherwise, Aii = 1 iff vertex i has a loop (this
being identical for directed and undirected graphs).

Several other data representation issues also bear
mention. In the special case of networks with valued edges,
we use the above representation with the minor modifica-
tion that Aij is the value of the (i, j) edge (conventionally 0
if no edge is present). When representing multiple relations
on the same vertex set, it is also useful to extend the notion
of the adjacency matrix to encompass the adjacency array.
For a set of graphs G1, . . . , Gm on a common vertex set V
having order n, we use the m ¥ n ¥ n adjacency array A
such that Aijk = 1 if j sends an edge to k in Gi, and 0
otherwise. As usual, we replace cell values with edge values
in the non-dichotomous case.

Although adjacency arrays are simple to work with, they
can be unwieldy where n is very large (especially if G is
very sparse). In such cases, it is common to store networks
via edge lists, or pairs of vertices which are tied to one
another. Another representation which is sometimes useful
is the incidence matrix, a n ¥ |E| matrix I such that Iij = 1 if
i is an end-point of edge j and 0 otherwise. Direction within
incidence matrices is denoted via signs, such that Iij = -1 if

i is the source of the jth edge of G, and Iij = 1 if i is, instead,
the destination of the jth edge. Incidence matrices are rela-
tively unwieldy, and are defined only up to a column per-
mutation; as such, they are not often used in conventional
network research. However, incidence matrices are very
useful for representing hypergraphs (i.e. networks whose
edges involve more than two end-points) and for two-mode
data (i.e. networks consisting of connections between two
disjoint types of entities). I do not treat these applications
here, although the interested reader may turn to Wasserman
and Faust (1994) for an introductory account.

Network boundary definition

As noted above, a social network is defined by a set of
entities, together with a social relation on those entities. As
such, a network is bounded by the set of entities on which
it is defined. While the same principle applies to any social
grouping, network boundaries are of particular importance
due to the intrinsically interactive nature of relational
systems. Specifically, a misspecified network boundary
may include or exclude not only some set of relevant or
irrelevant entities, but also all relationships between those
entities and others in the population (not to mention all
relationships internal to the included/excluded entities).
Furthermore, many structural properties of interest (e.g.
connectivity) can be affected by the presence or absence of
small numbers of relationships in key locations (e.g. bridg-
ing between two cohesive subgroups). Thus, the inappro-
priate inclusion or exclusion of a small number of entities
can have ramifications which extend well beyond those
entities themselves, and which are of far greater importance
than the types of misspecification which occur in most
non-relational settings. As such, it is vital to define the
network boundary in a substantively appropriate manner,
and to ensure that subsequent analyses reflect that choice of
boundary (and not, for example, a boundary which simply
happens to be methodologically convenient). In practice, of
course, network boundaries are set in a number of ways,
and it is useful to review those most frequently encountered
in the network literature.

Exogenously defined boundary. In the ideal case, one has a
clearly specified substantive theory which indicates the
entities that are relevant for some phenomenon of interest,
and whose ties are, hence, relevant for subsequent analysis.
The network boundary is then exogenously defined by
one’s substantive knowledge, and one’s research task then
shifts to measuring ties among the indicated entities. Exog-
enously defined boundaries are common in small group and
intra-organizational studies, wherein membership is well
defined and one is frequently concerned only with interac-
tions among group members (e.g. Krackhardt & Stern,
1988; Lazega, 2001). Studies of relationships within spa-
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tially defined units (e.g. residential studies like those of
Festinger, Schachter, and Back (1950) and Yancey (1971))
serve as another example, although it is important to ensure
that the theoretically relevant relations are truly restricted to
the spatial boundary. Indeed, the same problem may surface
in organizational settings, when researchers suddenly shift
focus from a locally defined question (e.g. who has the
most within-group friendships?) to one which has non-local
elements (e.g. who has the most friendships overall?). The
extent to which a given sample may be regarded as exog-
enously bounded thus depends on the research question
being pursued, rather than the data in hand.

Relationally defined boundary. A less common means of
defining a network boundary is endogenously (i.e. by speci-
fying the relevant entities as those who satisfy some con-
dition of social closure). Intuitively, the presumption in this
case is that entities and relations within the ‘closed’ set do
not depend on those beyond that set and, hence, may be
studied separately. Definition of the network boundary is
thus determined by the closure condition, and usually by a
set of ‘seed’ entities who are defined as being of intrinsic
interest. For instance, in a study of interaction among com-
munity organizations, a researcher might define the relevant
network as consisting of some small set of ‘core’ organiza-
tions (e.g. the Mayor’s Office or Chamber of Commerce)
together with all the organizations that can be reached by
the core organizations through some path in the relevant
network. As organizations not in this set do not (by con-
struction) have any contact with those in the set, the result-
ing network may be presumed to be sufficiently decoupled
from its surroundings to permit independent analysis. (See
Freeman, Fararo, Bloomberg, and Sunshine (1963) for a
related discussion.) As with exogenous boundary defini-
tions, the plausibility of this assumption must rest on sub-
stantive knowledge regarding the phenomenon under study,
and should not be naïvely assumed. For instance, if a lack
of ties to external organizations (e.g. major employers)
were critical to the phenomenon of interest, then the
network boundary definition in the above example would
be inappropriate. The use of relationally defined boundaries
does not, therefore, exempt one from verifying that one’s
inclusion criterion is theoretically appropriate.

Methodologically defined boundary. Finally, the network
boundaries for many studies are determined by the meth-
odology that is used to obtain the network in question. For
instance, sampling interaction via a given communication
medium (e.g. email, radio communication etc.) may implic-
itly limit the measured network to those using the medium
in question; more explicit boundary effects may result from
measurement designs such as those described below. While
sometimes problematic for the reasons described above,
there are some circumstances in which methodologically

defined boundaries may be appropriate. In particular, if it
can be shown that inference for some quantity of substan-
tive interest requires only the observation of particular ties
(e.g. ego’s alters and all ties among them), then it may be
both reasonable and efficient to restrict one’s data collec-
tion to the particular relationships that are required for the
intended purpose. This is, in fact, a form of theory-based
boundary definition, save that it is the relevant theory of
inference, rather than a theory of process or structure,
which guides the process. While this is a legitimate
approach where applicable, one must still ensure that the
inferential theory being used is substantively appropriate,
and that the information being gathered is, in fact, adequate
to draw inferences which are of substantive interest. One
cannot justify choosing a network boundary on method-
ological grounds if the methodology in question is not itself
appropriate for the problem at hand.

Common measurement designs

A question apart from (but related to) the network boundary
definition is the question of network measurement. Broadly
speaking, the designs used in network measurement
attempt to permit inference at one of three levels. Personal
or egocentric inference centres on the properties of indi-
viduals’ local networks. These may be limited to the
number of alters to whom ego is tied, but may also include
individual attributes of those alters and/or the existence of
ties among them. Strict egocentric inference does not seek
to generalize beyond ego’s local structure and, hence, does
not involve the ‘linking’ of personal networks among mul-
tiple individuals (even where this is possible); while it is
limited in its ability to yield insights regarding global struc-
ture, egocentric inference has modest data requirements,
and is easily adapted to large-scale survey research. For this
reason, most population-level network studies (e.g. the
network modules of the General Social Survey (Davis &
Smith, 1988) and International Social Survey Program) are
of this type. A more ambitious goal than egocentric infer-
ence is general network inference, in which the goal is
detailed reconstruction of the entire social network on a
given population. Studies of this kind (sometimes called
‘complete network’ or ‘network census’ studies) allow for
the determination of both global and local social properties,
and are hence the ‘gold standard’ of network analysis. Most
organizational and small group studies are designed with
the goal of complete network inference, but the strict data
requirements make this goal difficult to obtain for networks
on large populations. Finally, a third level of inference
involves the attempt to estimate cognitive social structures
(Krackhardt, 1987a) (i.e. the view of the complete social
structure as understood by each member of the network).
Although distinct from complete network inference in the
above sense, knowledge of cognitive social structures can
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serve as a basis for accomplishing the former via appropri-
ate data aggregation models (Romney, Weller, & Batch-
elder, 1986; Batchelder & Romney, 1988; Butts, 2003).
Cognitive social structures are nevertheless important
targets of inference in their own right, and should not be
assumed to be exact replications of behavioural networks
(Bernard, Killworth, Kronenfeld, & Sailer, 1984; Krack-
hardt, 1987a).

Given that we may seek to infer structure at the personal
network, complete network, or cognitive level, there are a
number of designs which can be used to meet this objective.
Here, I briefly outline some of the major varieties that are
currently used in the study of interpersonal networks. Each
grouping listed here has many subvariants, which will not
be treated in detail. Further descriptions of many related
issues can be found in Marsden (1990, 2005) and Morris
(2004).

Own-tie reports. The most common designs in interper-
sonal network measurement consist of variants on the own-
tie report scheme: selected informants are asked to report
on the ties to which they are an end-point. For directed
relations, some own-tie reporting schemes are one-way;
that is, ego is asked to provide either incoming or outgoing
ties, but not both. In other cases, ego may be asked to
provide both incoming and outgoing ties of which he or she
is an end-point. The egos sampled for own-tie reporting
schemes are generally the entire set of network members
(where inference is sought regarding all ties in the
network), or a probability sample thereof (when only
average properties of alters are required). When imple-
mented in the former case (with all egos reporting), own-tie
designs supply either one (for one-way) or two (for two-
way) reports per potential edge. As such, they tend to be
vulnerable to both non-response and measurement error,
although the former is much less problematic in personal
network studies (wherein no attempt is made to infer the
entire network).

Complete egocentric designs. Another common set of
designs comprises the complete egocentric family. In a
complete egocentric design, selected informants are first
asked to nominate those with whom they are tied (as in an
own-tie report design). This is then followed by a second
phase, in which ego is asked to identify which pairs of alters
are tied to one another. As with own-tie designs, these
identifications may be one way or two way in the directed
case, and egos may be chosen in a number of ways. Most
commonly, complete egocentric designs are used in per-
sonal network research, where egos are sampled from a
larger population (and no attempt is made to link alters
across egos). In this case, the complete egocentric designs
have the advantage of providing information regarding
ego’s local structural context, while still being simple

enough to be administered via standard survey instruments.
Although uncommon, complete egocentric designs can also
be used when attempting a network census, in which case
they provide some redundant information regarding par-
ticular edges. (Specifically, each potential edge will receive
one report per informant who reports being tied to both
end-points, or who is an end-point and who reports being
tied to the other end-point.) Unfortunately, such third-party
reports are non-ignorably dependent upon informant error
rates and, hence, the use of network inference models like
those of Butts (2003) is non-trivial for such data. More
generally, it should be noted that reporting errors on the part
of ego regarding his or her personal ties will affect ego’s
reports of alters’ ties under a complete egocentric design, as
reports are elicited only for edges among those to whom
ego claims to be tied. The consequences of this potential for
complete egocentric network designs to amplify measure-
ment error are not well studied at this time.

Link-trace designs. To provide valid inferences, the above
designs require ignorable methods of drawing egos from
the population of network members (to infer personal
network structure) or taking a census of egos (for complete
network inference). In some cases, however, we may lack a
sampling frame for network membership (e.g. when study-
ing a hidden population) or may need to estimate global
network property without measuring all members of a large
population. In such settings, link-trace designs serve as a
potential option. Broadly speaking, link-trace designs are
adaptive sampling methods (Thompson, 1997) which
operate by iteratively eliciting alters from a current set of
egos (as in own-tie report), and then using these alters as
egos in further waves of data collection. In this way, link-
trace designs ‘walk’ through the network, following chains
of ties from current respondents to future respondents. Vari-
ants of link-trace designs include snowball sampling
(Goodman, 1961), random-walk sampling (Klovdahl,
1989), and respondent-driven sampling (Heckathorn, 1997,
2002), all of which use somewhat different procedures for
selecting an initial ‘seed’ sample, contacting egos within
each wave, determining which alters to trace in additional
waves, and deciding how many waves to use. While
complex to implement and analyze, link-trace methods
have the desirable feature that they can generate reasonable
estimates without representative seed samples; somewhat
counterintuitively, the Markovian properties of the sam-
pling mechanism tend to reduce the impact of the seed
sample on subsequent waves (see Heckathorn, 2002 for a
discussion, and Tierney, 1996 for related commentary on
convergence in Markov chains). Furthermore, link-trace
designs can allow for some types of global network infer-
ence, despite the fact that not all edges are measured (see
Thompson & Frank, 2000 for details). However, link-trace
designs generally provide, at most, one to two measure-
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ments per potential edge (depending on the elicitation
scheme used), and share with complete egocentric designs
the problem that sampling is potentially contaminated by
reporting error. How robust these designs are to such errors
is currently unknown, as are many other aspects of their
performance in realistic settings. As such, link-trace
designs have a great deal of promise, but should be used
with caution.

Arc sampling designs. A final category of designs are those
based on arc sampling (‘arc’ being another term for directed
edge). Arc sampling designs differ from the others dis-
cussed here in that they begin by selecting particular edges
to measure, and then seek information on those edges.
Importantly, this information need not come from the indi-
viduals who are end-points to the edges in question:
observer or third party informant reports, archival materi-
als, or even sensor data (Choudhury & Pentland, 2003) can
serve to produce observations. The observational data
famously reported by Killworth and Bernard (1976);
Bernard and Killworth (1977); Killworth and Bernard
(1979); Bernard, Killworth, and Sailer (1979) can be under-
stood as arising from an arc sampling design, as is the
cognitive social structure (CSS) design used by Krackhardt
(1987a) (in which every network member is asked to report
on the ties between all other network members). Frank
(2005) describes arc sampling designs which arise from
contexts in which one samples on realized interactions,
rather than potential interactions; some archival data are of
this form (e.g. news accounts of partnerships among firms).
Another family of arc sampling designs is described by
Butts (2003), in which multiple sources are queried about
the state of various potential edges, such that each potential
edge is measured a fixed number of times (with measure-
ments being balanced across sources). This family of
designs is intended for use with data from informants or
observers, and provides a way to reduce the considerable
respondent burden imposed by the CSS design.

Because they allow for multiple measurements on each
potential edge, arc sampling designs can be used to provide
complete network estimates which are highly robust to
reporting error and missing data (Butts, 2003). However,
the number of observations required can prove burdensome
to respondents, and the more complex designs can be dif-
ficult to execute. Most such designs also require that the
target population be known in advance, although they do
not necessarily require that network members be willing or
available to supply information on their own ties; observers,
sensors, or informants may be used to provide information
on persons who are otherwise unavailable, assuming that
these sources do, in fact, have such information (an
assumption which should be checked via error estimates).
Likewise, combining measurements from multiple error-
prone sources requires appropriate statistical modelling, as

sources may vary greatly both in overall accuracy and in the
types of errors generated. Arc sampling designs are thus
very effective tools for producing high-quality estimates at
the complete network level, but require a greater investment
of resources than do simpler approaches.

Common measurement instruments

Although networks may be obtained from archival materi-
als, sensors, observation, or many other sources, much
network data is gleaned from human informants via survey
instruments. The most common instruments used in the
field are of two basic types: prompted recall or ‘roster’
instruments, and free list or ‘name generator’ instruments.
Both instrument types have particular strengths and weak-
nesses, and we consider each in turn.

Rosters. Perhaps the most common type of instrument for
measuring interpersonal networks is the roster. Roster
instruments typically consist of a stem question (e.g. ‘To
whom do you go for help or advice at work?’) followed by
a list of names. Subjects are instructed to mark the names of
those with whom they have the indicated relation, leaving
the others blank. Such an instrument is simple to use, and
minimizes false negatives due to forgetting (as it automati-
cally prompts for all alters). On the other hand, instrument
length grows linearly with the number of possible alters,
and generally becomes unwieldy when more than 30–50
names are involved. Likewise, a roster instrument can only
be used where the set of potential alters is known in
advance, and where that set can be divulged to the subjects
without creating a breach of confidentiality. In a context
such as Heckathorn’s (1997) study of ties among intrave-
nous drug users in New Haven, Connecticut, provision of a
roster instrument would be both impractical and unsafe:
impractical due to the difficulty of knowing the (hidden)
population of intravenous drug users before administering
the instrument, and unsafe due to the potential legal conse-
quences of compiling and disseminating such a list within
the study population. Despite such concerns, roster instru-
ments can be effectively deployed in many contexts, and
should generally be the preferred to name generators (see
below) where feasible.

Name generators. The primary alternative to roster instru-
ments for the collection of interpersonal network data is the
use of name generators. A name generator consists of a
question which asks the subject to produce from memory a
list of individuals, generally those with whom the subject
has some relationship. The name generator therefore differs
from the roster instrument only in employing a free list
protocol, as opposed to prompted recall. False negatives
due to forgetting and subject fatigue are of concern here,
particularly for relations for which ego has a large number

20 Carter T. Butts

© 2008 The Author
© 2008 Blackwell Publishing Ltd with the Asian Association of Social Psychology and the Japanese Group Dynamics Association



of ties (Brewer, 2000). However, this approach can be
deployed where supplying a roster would be impossible,
impractical, or would pose an unacceptable risk to subjects.
As a result, name generators are often used in large-scale
network studies, and in studies of sensitive and/or hidden
populations. Although rosters are generally preferred to
name generators where possible, both methods are likely to
produce fairly similar results provided that the questions
being asked do not pose an excessive mnemonic challenge,
and that the number of alters for each ego is reasonably
small.

Visualization

Networks are commonly depicted via displays in which
each vertex is represented by a polygon or other shape
(frequently a circle), with lines connecting the shapes asso-
ciated with adjacent vertices. (Arrows are generally used to
display directed edges, with the arrowhead pointing in the
direction of the receiving vertex.) The introduction of such
displays in the social sciences is generally credited to
Moreno (1934), who coined the term sociogram to describe
them. Unlike other data displays commonly used in scien-
tific contexts, the specific location of points (vertices) in a
sociogram is generally arbitrary, and is usually driven by
communicative and aesthetic criteria: this is because the
network is defined by the pattern of ties among vertices, a
property which is not affected by the placement of vertices
within the display. That said, some displays generally prove
more effective than others in revealing network structure
(McGrath, Blythe, & Krackhardt, 1997), and certain
methods of placing vertices within a sociogram (known as
layout algorithms) are more widely used than others. The
most common layout algorithms are based on what are
known as force-directed placement schemes, in which
vertex placement is determined by a hypothetical physical
process usually incorporating attraction between adjacent
vertices balanced by a general tendency toward repulsion
among all vertices. Examples of such schemes include the
Fruchterman-Reingold (Fruchterman & Reingold, 1991)
and Kamada-Kawai algorithms (Kamada & Kawai, 1989),
both of which may be found in common network visual-
ization and analysis packages (Butts, 2000; Batagelj &
Mrvar, 2007; Borgatti, 2007). While other more exotic
approaches are available, most layout algorithms share with
these methods the common goals of placing vertices close
to their network neighbours, preventing two vertices from
occupying the same location, minimizing the number of
edge crossings, and maintaining approximately constant
edge length. With the exception of certain special classes of
networks (e.g. the planar graphs (West; 1996)), these goals
cannot generally be satisfied simultaneously. Different
layout algorithms thus prioritize different visualization
goals, as well as additional objectives such as scalability to

extremely large graphs. The creation of such algorithms has
spawned its own field within computer science (the field of
graph drawing), and is a topic of active research.

In addition to layout methods designed to optimize aes-
thetic criteria, layout methods are sometimes used to
convey specific structural information. Target diagrams,
for instance, place vertices on a series of circular shells
based on some specified criterion (e.g. centrality scores);
although used in network analysis since before the dawn of
computer-aided display (Freeman, 2000), they are now
used infrequently due to their poor applicability to large
and/or dense networks. Another popular method for deter-
mining vertex position is the use of multidimensional
scaling (Torgerson, 1952) or eigenvector solutions (Rich-
ards & Seary, 2000), which can be used to superimpose
network information on a more common multivariate
display. A ‘hybrid’ approach which stands between purely
aesthetic and data analytical layout methods are latent
space models such as those of Hoff, Raftery, and Handcock
(2002) and Handcock, Raftery, and Tantrum (2007).
Although they can be viewed as proper stochastic models of
network structure, a major application of latent space
models is to produce informative layouts for network visu-
alization. The line between visualization and analysis can
hence be quite thin, and - as emphasized by Freeman
(2004) - innovations in data display are often linked to
other developments within the network analytical field.

In addition to purely configural properties, network visu-
alization may also include information on edge values and
vertex attributes. Vertex size and shape may be varied to
indicate individual attributes and/or structural properties,
line width may be used to denote edge strength, and colour
or form may be used to distinguish between nominally
distinct edges or vertices. There are few, if any, ‘standard’
rules for such techniques at this time, although obvious
visual motifs such as proportional scaling of vertex radii or
surface area, or edge widths, based on attribute magnitudes
are frequently encountered. General references on the
display of quantitative data (Tufte, 1983) maybe useful
sources of guidance on effective methods for supplement-
ing purely structural displays.

Measurement and modelling of
structural properties

Many of the most basic questions in the study of social
networks involve the measurement and modelling of par-
ticular structural properties. We may ask, for instance,
which individuals serve as bridges between otherwise dis-
connected groups, or whether a given network shows
signs of being more centralized than would be expected
by chance. Structural properties have been shown to be
predictive of work satisfaction and team performance
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(Bavelas & Barrett, 1951), power and influence (Brass,
1984), success in bargaining and competitive settings
(Burt, 1992; Willer, 1999), mental health outcomes
(Kadushin, 1982), and a range of other phenomena; such
investigations hinge on the ability to systematically
measure the properties of social structure in a manner
which facilitates modelling and comparison. Here, we
review a widely used approach to the measurement of
structural properties - the use of structural indices - and
describe a range of measures that are frequently encoun-
tered in the network literature. We also consider basic
methods for the testing of structural hypotheses, which
can be used where classical procedures are not applicable.
Finally, we briefly review one approach to the modelling
of network structure, and describe its use in inferring
underlying structural influences from cross-sectional data.

Structural indices

Upon obtaining network data, the analyst is immediately
faced with a non-trivial problem: how can one extract
interpretable, substantively useful information from what
may be a large and complex social structure? Simple visu-
alization of network data can be illuminating, but it is not
sufficiently precise to serve as an adequate basis for sci-
entific work. Rather, we require a means of specifying
particular structural properties to be examined, quantify-
ing those properties in a systematic way, and (ultimately)
comparing those properties against some baseline model
or null hypothesis. The oldest and most common para-
digm for accomplishing these goals is what may be called
the structural index approach. The basis of this paradigm
is the development of descriptive indices - real-valued
functions of graphs - which quantify the presence or
absence of particular structural features. These indices
may describe structure which is local to a particular entity
(or group thereof), or may measure structural features
of the network as a whole. Similarly, indices may be
designed to be interpreted ‘marginally’ (i.e. as expressing
the total incidence of some structural feature) or ‘condi-
tionally’ (i.e. as expressing the relative incidence of some
feature vs a ‘baseline’ determined by other features such
as size or density). In addition to direct interpretation,
structural indices may be used as covariates in statistical
models, and are sometimes used as dependent variables
(although, as we shall see, this is not always unproblem-
atic). They can also serve as the ‘building blocks’ for
more elaborate network models, such as the discrete expo-
nential families which will be discussed below. Before
considering modelling applications, then, we review some
of the primary classes of structural indices, and highlight
some of the most commonly used members of each class.
Modelling and hypothesis testing for these indices will be
discussed in the sections which follow.

Node-level indices. A frequent objective of social network
analysis is the characterization of the properties of indi-
vidual positions. We may seek to identify, for instance,
persons in positions of prominence, or whose positions
facilitate actions such as information dissemination. Alter-
nately, we may also be interested in the social environment
faced by a given individual, measuring features such as the
extent to which his or her local environment is socially
cohesive, or the diversity of his or her personal contacts.
Such properties are generally summarized by means of
node-level indices, real-valued functions which - for a
given graph and vertex - express some feature of network
structure which is local to the specified vertex. We may
denote a node-level index (or NLI) by a function f such that
f(v, G) returns the value of the specified index at vertex v,
within graph G. NLI are fairly well developed within the
network literature, and a wide range of such indices exists.
Here, we shall review two of the most common categories:
centrality indices, and ego-network indices. As we shall
see, there is much overlap between these two classes of
NLI; we treat ego-network indices separately, however,
because of their growing importance in survey research.

Centrality indices: The oldest and best-known descrip-
tive indices within network analysis are those designed to
capture the extent to which one vertex occupies a more
central position than another (in any of several senses).
There are many distinct notions of centrality, leading to a
proliferation of measures - here, we focus on four of the
most widely used. The first three of these were treated in
Freeman’s (1979) famous paper on centrality indices,
which itself was a consolidation of previous work on the
subject. We also add an additional measure (usually cred-
ited to Bonacich (1972), but also a refinement of existing
indices) which is widely used in many applications.

The most basic centrality index is degree, defined in the
undirected case as the size of the neighbourhood of the
focal vertex. Formally cd(v, G) ≡ |N(v)|. In the directed case,
three notions of degree are generally encountered: outde-
gree c v G N vd+

( ) ≡ ( )( )+, ; indegree c v G N vd−
( ) ≡ ( )( )−, ;

and total or ‘Freeman’ degree c v Gdt ,( ) ≡(
c v G c v Gd d+ −( ) + ( )), , . There is, in fact, a fourth notion of
degree corresponding to the degree of the focal vertex in G’s
underlying semigraph, specifically, |N+(v) ∪ N-(v)|, but this
does not seem to be explicitly named within the network
literature. As this measure is equal to the total number of
alters involved in any manner with v, it is nevertheless a
useful tool in the analyst’s arsenal. Regardless of their
variations, the degree measures all capture the number of
partners of v, and thus tend to serve as proxies for activity
and/or involvement in the relation. In practice, degree also
correlates strongly with most other measures of centrality,
making it a powerful summary index. As degree is easily
sampled and fairly robust to error (Borgatti, Carley, &
Krackhardt, 2006) and missing data (Costenbader &
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Valente, 2003), it is also a favoured index for use under
adverse conditions. The counts of the number of vertices
having degree 0, 1, . . . , n - 1 (respectively) collectively
comprise the degree distribution. Degree distributions have
generated intense interest in recent years as easily modelled
signatures for hypothetical network formation processes
(Barabási & Albert, 1999; Ebel, Mielsch, & Bornholdt,
2002); we will revisit them briefly under the section on
graph-level indices.

The second of the three ‘classic’ indices of Freeman
(1979) is known as betweenness. As its name implies,
betweenness quantifies the extent to which the focal vertex
lies on a large number of shortest paths between various
third parties; high-betweenness individuals thus tend
to act as ‘boundary spanners’, bridging groups which
are otherwise distantly connected, if at all. Formally,
betweenness is defined in the directed case as

c v G
g v v v G

g v v G
b v v V v,

, , ,

, ,
,( ) ≡ ′( )

′ ′′( )′( )⊂Σ ′′
′ ′′

, where g(v, v�, G) is the

number of (v, v�) geodesics in G, g(v, v�, v�, G) is the
number of (v, v�) geodesics in G containing v�, and
′ ′ ′′( )

′ ′′( )
g v v v G

g v v G

, , ,

, ,
is taken equal to 0 where g(v�, v�, G) = 0.

Thus, betweenness considers only shortest paths, and
weights paths inversely by their redundancy. (The stress
centrality of Shimbel (1953) can be used where one seeks
an index which is identical to betweenness, save in relaxing
this latter condition.) As betweenness is based on the path
structure of the graph, it is a truly global index.3 Unfortu-
nately, this means that it will be fairly non-robust to error
and missing data in certain settings, and that it cannot be
sampled from local network data (see, however, Borgatti
et al., 2006 and Everett & Borgatti, 2005 for a counterpoint
and some pragmatic approximations). Betweenness is also
fairly expensive to compute, although algorithms such as
those of Brandes (2001) produce reasonable performance
on sparse networks. Despite these drawbacks, betweenness
is a widely used measure, and is frequently invoked as an
example of a positional property which cannot be reduced
to simple local structural features.

The third ‘classic’ centrality measure is closeness, which
captures the extent to which the focal vertex has short paths
to all other vertices within the graph. In its standard formu-

lation, C v G
n

d v v
c

V

,
,

( ) ≡ −
′( )′∈

1

Σν
, where d(v, v�) is the geo-

desic distance from vertex v to vertex v�. Closeness is
ill-defined on graphs which are not strongly connected,
unless distances between disconnected vertices are taken to
be infinite. In this case, Cc(v, G) = 0 for any v lacking a path
to any vertex and, hence, all closeness scores will be 0 for
graphs having multiple weak components. This rather
unsatisfactory state of affairs greatly limits the utility of
closeness in practical settings and, indeed, the index is
much less widely used than betweenness or degree. (Some

obvious alternatives to Freeman’s closeness, such as
Σ ′∈

−′( )
−

v V vd v v

n
\ , 1

1
, avoid this problem. It is unclear why

these measures remain largely unutilized.) Despite its limi-
tations, closeness is useful in identifying vertices which can
quickly reach others within a given network, and/or which
can be quickly reached (in the undirected case). As
maximum closeness vertices typically are (or are close to)
vertices of minimum eccentricity (i.e. maximum distance
from all other vertices), they correspond closely to intuitive
notions of being in the ‘middle’ of the graph; indeed, ver-
tices of minimum eccentricity are known as graph centres,
and such vertices may be approximately identified using
closeness scores. The closely related graph centrality of
Hage and Harary (1995), based on inverse eccentricity,
provides an exact identification.

The last centrality index to be presented here does not
belong to the three ‘classic’ measures of betweenness,
closeness, and degree, but is nevertheless of great impor-
tance for structural analysis. This is particularly true
because of its surprising ubiquity: it arises from many dif-
ferent motivating arguments, and admits a number of seem-
ingly distinct interpretations. The measure in question is the
eigenvector centrality, defined by the principal solution to
the linear equation system

λc Yce e= , (1)

where ce is the vector of centrality scores, Y is the adja-
cency matrix of G, and l is a scaling coefficient. Where the
principal solution to Equation 1 is used, l is equal to the
first eigenvalue of Y, and ce is the corresponding eigenvec-
tor. Hence, ce(v, G) is v’s score on the first eigenvector of
G’s adjacency matrix (whence comes the name of the
index). The somewhat obscure meaning of these scores is
elucidated by writing Equation 1 in another form:

c v G Y c v Ge i
j

n

ij e j, , .( ) = ( )
=
∑1

1λ (2)

Thus, we can see from Equation 2 that eigenvector cen-
trality can be interpreted recursively as positing that the
centrality of each vertex is equal to the sum of the centrali-
ties of its neighbours, attenuated by a scaling constant (l).
We might summarize this idea by the intuition that ‘central
vertices are those with many central neighbours.’ As this is
true of the neighbours, in turn, we can envision eigenvector
centrality as reflecting the equilibrium outcome of a social
process in which each individual sends some quantity
(status, power, information, wealth etc.) to each of his or
her neighbours, that quantity being determined by his or her
current total (dependent upon incoming transfers from his
or her neighbours) and an ‘attenuation’ effect. This can also
be seen by writing the measure in terms of its series
expansion:
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λ
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where Y� is the �th power of Y. As Yij
� is equal to the

number of walks of length � from vi to vj, it follows that ce

composes vi’s centrality from the sum of its walks to other
vertices, weighting those walks inversely by their length
(via l). As this implies, vertices are high on eigenvector
centrality when they have many short paths to many other
vertices in the network, whether or not those paths are
necessarily geodesics. The simplest way to obtain such a
state is to be deeply embedded in a large, dense cluster and,
indeed, positions of this kind have the highest ce scores.
This can be taken yet farther by considering a simple core-
periphery model of social interaction (Borgatti & Everett,
1999), in which we posit that the expected value of an
interaction between any given pair vi and vj satisfies EYij �
bibj for some non-negative ‘coreness’ measure, b. The
behaviour of this model is both simple and intuitive: high-
coreness individuals are likely to have strong interactions
with each other (high bi ¥ high bj leads to high EYij); high
coreness individuals are likely to have only weak interac-
tions with low-coreness individuals (high bi ¥ low bj leads
to low/medium EYij); and low-coreness individuals are
unlikely to have much interaction with each other at all (low
bi ¥ low bj leads to extremely low EYij). Surprisingly,
the optimal ‘coreness’ measure under this model (in a
least squares sense) turns out to be eigenvector
centrality - setting b = ce minimizes the squared error
between bbT and Y. This means that eigenvector centrality
is a core-periphery measure, in addition to its other inter-
pretations. Furthermore, it is a well-known result of linear
algebra (Strang, 1988) that lcece

T (where l and ce are the
first eigenvalue/eigenvector pair of Y) is the best one-
dimensional approximation of Y in the least squares sense.
Thus, eigenvector centrality also provides a set of scores
which (in one sense, at least) best summarizes the entire
structure of the network as a whole. These rather remark-
able results demonstrate the deep connections between
node-level concepts of centrality, global features such as
core-periphery structure, structural summaries and dimen-
sion reduction, and social processes such as diffusion and
influence. Eigenvector centrality turns up at the centre of
many of these connections and, as such, is an index of great
theoretical and methodological significance. (See Bonacich
(1972), Seary and Richards (2003), and Baltz amd Kloe-
mann (2005) for further discussion.)

Ego network indices: One family of node-level indices
whose importance has grown in recent decades is that of
measures for egocentric network (or ‘ego net’) properties.
As mentioned above, the egocentric network of vertex v in
graph G is defined to be G[v ∪ N(v)] (i.e. the subgraph of
G induced by v together with its neighbourhood in G). v’s

ego net thus captures the local structural environment of
v, in the sense of v’s alters and any edges between them.
(In some studies, a distinction is made between v’s per-
sonal network, or local neighbours, and its ‘complete’
ego network as defined above. Our discussion here is
concerned with the latter case.) Following this, an ego
network index is formally defined as any function
f v G: ,( )� � such that f v G f v G v N v v, ,′( ) = ∪ ( )[ ]( ) ∀ ,
′ ′ ∪ ( )[ ] = ∪ ( )[ ]G G v N v G v N v: . Put less formally, an

ego network index is a node-level index that depends only
on v’s ego net. This property is not only a defining con-
dition for the ego network indices, but also accounts for
their popularity: because these indices depend only on
local structure, they can be used in settings for which
only local network information is available. The classic
example of such a setting is a conventional survey, in
which an instrument is administered to members of a
sample drawn from a larger population. Although recon-
struction of complete networks is generally impossible in
this case, respondents can be asked to provide information
on their alters, as well as ties among those alters. The
result of this elicitation scheme (introduced earlier in the
context of complete egocentric sampling designs) is a col-
lection of ego nets drawn from the larger network, which
can, in turn, be studied using egocentric network indices.
Given the widespread popularity of survey methods (and
the great investment in infrastructure for such research),
ego net studies have emerged as a popular means of inte-
grating network measures into population research.
Although very limited in scope, ego network indices thus
play an important role in modern network research.

While it is obviously impossible to enumerate all
members of the family of ego network indices, a number
of frequently used measures are worth noting. The
most popular index is one which has already been men-
tioned: degree. In addition to being an ego network
index in its own right, degree also appears in the form
of ego network size (often incorrectly shortened to
‘network size’) which is equal to one plus the degree of v
(i.e. the number of vertices in v’s ego net). Local cohesion
is often measured by ego network density, which is gen-

erally defined as E G N v
N v( )[ ]( ) ( )( )−2

1

in the undirected

case and 2
2

1

E G N v
N v( )[ ]( ) ( )( )− in the directed case.

Somewhat confusingly, this definition excludes ties
involving ego from the computation; the alternative

measures E G v N v
N v∪ ( )[ ]( ) ( ) +( )−1

2

1

(undirected) and

2
1

2

1

E G v N v
N v∪ ( )[ ]( ) ( ) +( )− (directed) are sometimes

used, and it is important to clear which version is used
when interpreting the measure. Another useful index is
local bridgeness (also referred to by Gould & Fernandez
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(1989) as the total brokerage score), which measures the
extent to which ego is a local mediator for ties among his
or her alters. Specifically, the local bridgeness of v is the
number of v�, v� pairs such that (v�, v) (v, v�) ∈ E and (v�,
v�) ∉ E. In the undirected case, this happens to take the

simple form
N v

E G N v
( )( ) − ( )[ ]( )
2

, which highlights the

measure’s connection with both ego net size and ego net
density. Gould and Fernandez (1989) further decompose
the bridgeness/brokerage score based on nodal covariates,
allowing for distinctions to be drawn regarding the specific
types of brokerage in which v is implicated. This approach
of combining local structural measures with nodal covari-
ates has proven useful in a range of substantive settings,
and is a common strategy within ego net research. A
related family of indices due to Burt (1992) incorporates
edge values to capture various aspects of local network
structure related to brokerage and exclusion opportunities;
these indices (stemming from Burt’s popular ‘structural
holes’ paradigm) have been widely used in organizational
contexts.

In addition to these measures, it should be noted that
almost all graph-level indices (which are discussed below)
can be adapted to serve as egocentric network measures by
restricting their computation to v’s ego net. Formally, for
graph-level index f, we can construct the ego net index f*
via the definition f*(v, G) ≡ f(G[v ∪ N(v)]). While such
measures can be useful, it is important to remember that
their behaviours will be constrained by the peculiar prop-
erties shared by all egocentric networks. For instance, all
egocentric networks are connected with diameter less than
or equal to two, contain at least one spanning star, and have
a minimum density of (|N(v)| + 1)-1 (under the ‘alternate’
measure in which ego is not excluded). These properties are
artifacts of the manner in which ego nets are defined, and
can affect otherwise familiar graph level indices in complex
ways; comparison of graph-level indices (GLI) scores
derived from ego nets with those derived from other net-
works is thus inappropriate in most cases. The same caveat
applies to the use of conventional node-level indices on
vertices within another’s ego network: as only a con-
strained, typically biased sample of edges from such verti-
ces are observed (much less higher order properties such as
paths), alters’ NLI within an ego network are not generally
reflective of their NLI in the larger network structure.
Researchers seeking to properly compare the structural
properties of adjacent vertices are thus well advised to
avoid egocentric network data in favour of more complete
alternatives.

Graph-level indices. While node-level indices describe
structure which is local to a particular vertex, GLI quantify
structural properties of the network as a whole. Although
such measures are especially important when comparing

networks, they are also useful for determining the large-
scale structural context in which behaviour occurs. GLI are
extensively used in the modelling of network structure,
where they serve to provide structural signatures for under-
lying dependencies among edges. By observing the particu-
lar pattern of GLI scores associated with a given network, it
is thus possible in some cases to infer properties of the
social process which gave rise to it; examination of such
process/feature connections is an area of active theoretical
research (Pattison & Robins, 2002; Robins, Pattison, &
Woolcock, 2005).

Formally, a graph-level index is a real-valued function, f,
such that f(G) is the value of the index for graph G. There
are many types of graph-level indices, measuring every-
thing from counts of particular structural configurations to
concentration of node-level features. Here, we review
several major categories of GLI, along with well-known or
otherwise instructive examples from each category. Later,
we will see how these indices may be used in contexts such
as network modelling and graph comparison.

Subgraph census statistics: An essential building block of
graph-level analysis is the subgraph census statistic. Such
statistics are defined as follows.4 As usual, let G = (V, E) be
a graph on n vertices, and let H be a graph on n� � n
vertices. Let S = {s1, s2, . . .} be the set of all subsets of V
having size n�. Then, the H-census statistic on G is |{s ∈ S:
H � G[s]}| (i.e. the number of induced subgraphs of size n�
which are isomorphic to H). This, in turn, is simply the
number of copies of H which can be found in G. While it is
possible to construct census statistics from any H, certain
cases have particular importance within the existing litera-
ture. Chief among these are sets of census statistics corre-
sponding to each of the isomorphism classes on the set of
order-n� graphs. For instance, consider the case when
n� = 2 - the order-two subgraphs, or dyads - and G is undi-
rected. There are then two possible values of H: the empty
or null dyad (two vertices without an edge); and the com-
plete dyad (two vertices with an edge). The corresponding
dyad census statistics for these graphs are the edge count of
G and the ‘hole count’, or number of vertex pairs which are
non-adjacent. (Clearly, the number of non-adjacent pairs is

equal to n
2( ) minus the number of edges.) A slightly more

interesting set of statistics arises when G is directed. In this
instance, there are three possible forms which can be taken
by H: the null dyad; the asymmetric dyad (two vertices with
one edge between them); and the complete or mutual dyad
(here, two vertices with two directed edges between them).
Note that while there are two ways to draw the asymmetric
dyad, each is isomorphic to the other; thus, the two forms
are grouped together into one isomorphism class. Given the
above, the directed dyad census of G consists of the
numbers of mutual, asymmetric, and null dyads. These
counts are conventionally indicated by the letters M, A, and
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N, respectively. The dyad census is used to form many other
measures of social structure, as described below.

Dyad census statistics reflect structural properties
which are limited to the interactions among two individu-
als; the corresponding sets of statistics for sets of three
individuals are those arising from the triad census. For G
undirected, there are four H configurations which can
potentially by observed, each determined entirely by the
number of edges present (0–3 inclusive). Thus, the triad
census of an undirected graph, G, consists of the counts of
triads with 0, 1, 2, and 3 edges (respectively). This same
simplicity, alas, does not hold in the directed case. There
are 16 isomorphism classes for the directed triads, con-
ventionally described (following Davis & Leinhardt,
1972) by their respective dyad census statistics, together
with an extra letter designating orientation. The 16
numbers corresponding to census statistics for each of
these isomorphism classes jointly constitute the directed
triad census for G, and convey important information
regarding local network structure. For instance, the related
notions of transitivity (Holland & Leinhardt, 1972) and
local clustering (Watts & Strogatz, 1998) can both be
expressed in terms of the frequency of triadic configura-
tions. In its most common form, the transitivity of a graph
is the fraction of ordered (i, j, k) triads such that (i, j) and
(j, k) are adjacent, for which i is adjacent to k. This quan-
tity can be written as a function of the triad census using
the weighting vector method described by Wasserman and
Faust (1994, p. 574).

Beyond dyad and triad census statistics, the field
becomes more ad hoc. The large number of tetradic isomor-
phism classes makes a complete enumeration unattractive,
a problem which continues to worsen for larger vertex sets.
Subclasses of census statistics which are sometimes used
include the cycle census statistics (counts of cycles of
specified length), and clique census statistics (counts of
complete subgraphs of specified size). A statistically impor-
tant family of census statistics is that of the k-stars (Frank &
Strauss, 1986), which measure the number of configura-
tions in which one vertex is adjacent to k others. k-stars
exhibit a nested structure, in which every k-star necessarily

contains k
k −( )1 k-1-stars; this creates strong dependence

among k-star statistics. Interestingly, the complete k-star
census exhibits a 1:1 relationship with the degree distribu-
tion. If d0, . . . , dn-1 is the number of vertices with 0, . . . ,
n - 1 edges (respectively) within G, then G contains

Σ i k
n

id i
k

=
− ( )1 k-stars. Obtaining the degree distribution from

the k-star census is more complex, but can be accomplished
by the recursion:

d s s d
i j

i

j

i
i i i

j

n i

i j= − +
+⎛

⎝⎜
⎞
⎠⎟ +

−⎛
⎝

⎞
⎠+

=

− −

+∑1
1

1

1
1 , (4)

where s1, . . . , sn-1 are the k-star statistics of G, dn-1 = sn-1,

and d n di
n

i0 1
1= − =
−Σ . Where G is directed, the k-star statistics

are generalized into k-instars, k-outstars, and various mixed
star configurations. These statistics collectively describe
the joint indegree and outdegree distributions of G; due to
the enumerative complexity of these statistics, they will not
be discussed in detail here.

In addition to their use in modelling (which will be
described presently), subgraph census statistics are impor-
tant building blocks of other structural indices. For
instance, network density (the ratio of observed to potential
edges within a graph) can be written M/(M + N) in the
undirected case, or (M + A/2)/(M + A + N) in the directed
case. Another important family of measures based on the
dyad census are the reciprocity measures, which will be
discussed in detail below.

Centralization indices: One standard family of graph-
level indices consists of those which measure the extent to
which centrality is concentrated within a small number of
vertices; these are known, appropriately enough, as central-
ization indices. The most commonly used of such indices
are those belonging to the family introduced by Freeman
(1979), which take the following form:

C G c j G c i G
i

n

j
( ) ≡ ( )( ) − ( )⎡

⎣
⎤
⎦=

∑
1

max , , (5)

where c is a centrality index. Thus, C quantifies the differ-
ence between the centrality of the most central vertex and
the centralities of all other vertices in the graph. This index
clearly depends on graph size, and it is common to work
with the corresponding family of normalized centralization
indices,

′( ) ≡ ( )
′( )′∈

C G
C G

C GG nmax G
(6)

where Gn is the set of order-n graphs. The normalized mea-
sures vary from 0 to 1, and do not have an obvious depen-
dence on n. Appearances can deceiving, however, as C�
may still depend indirectly on graph size where the corre-
sponding centrality measure is, in some way, size depen-
dent. C� can also be constrained by network density, or
other properties; for instance, Butts (2006b) has demon-
strated that the range of possible degree centralization
scores is approximately [0, 1 - d] at density d, for large n.

Interestingly, it is not necessary to measure the entire
centrality distribution to compute the Freeman centraliza-
tion of a graph. From Equation 5,

C G n
n

c j G c i G
i

n

j
( ) = ( )( ) − ( )⎡

⎣
⎤
⎦

⎡
⎣⎢

⎤
⎦⎥=

∑1

1

max , , (7)

= ( )( ) − ( )⎡
⎣⎢

⎤
⎦⎥=

∑n c j G
n

c i G
i

n

max , ,
j

1

1

. (8)
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Thus, C(G)/n is equal to the difference between the
maximum observed centrality score and the average cen-
trality of all vertices. For centralities which can be com-
puted from sampled local network information (e.g.
degree), this suggests that an estimator of the form
Ĉ G n c c( ) = −( )max (with cmax and c̄ being the sampled
maximum and mean centrality scores, respectively) may
provide a reasonable approximation to C(G) where c is not
too heavily right-skewed.

One attractive feature of the Freeman centralization mea-
sures is that they obtain their maximum values under the
star graph for most known centralities. Likewise, Freeman
centralization is always zero for a graph in which all verti-
ces are automorphically equivalent (e.g. a complete or
empty graph). This provides a fairly strong intuition regard-
ing the types of graphs which will be highly centralized (or
decentralized), at least at the extremes. It should be noted,
however, that the former condition is not true for all cen-
trality measures. For instance, the graph which is of
maximum centralization under eigenvector centrality is that
composed of a single dyad together with n - 2 isolates.
When applying C to a new centrality measure, then, it is
important to verify that the maximum centralization actu-
ally occurs on the star graph before using the star graph
centralization as the denominator for Equation 6.

Although Freeman’s C is the most widely used measure
of its kind, others have been proposed. Snijders (1981)
proposes the variance of the degree distribution as a
measure of centralization in that context, although (as he
notes) this is really a measure of heterogeneity rather than
centralization per se. Traditional upper-tail concentration
measures, such as the Gini index, are also natural candi-
dates for centralization indices. Inasmuch as these alterna-
tives are somewhat less dependent on the extreme upper
quantile of the centrality distribution, they may be more
robust to measurement error than the Freeman measures.
Thus far, however, most workers in the field have favoured
the simplicity and intuitive power of the latter option.

Hierarchy and symmetry indices: Although frequently
confused with centralization, hierarchy is a distinct and
important structural phenomenon. While centralization is
founded upon the notion of concentration (specifically, that
some individuals are more central than others), hierarchy is
based upon the notion of asymmetry. As such, hierarchy is
only well defined within a directed context. When consid-
ering very local (i.e. dyadic) structure, hierarchy is more
often encountered via the inverse concept of reciprocity.
Reciprocity (the tendency of ties to be reciprocal rather
than unidirectional) is measured in a number of ways, all of
which can be computed from the dyad census. The simplest
measure of reciprocity is the fraction of reciprocal dyads
(here denoted r1), which is given by r1(G) ≡ (M + N)/
(M + A + N) in MAN dyad census notation. r1 is a global
measure of symmetry, and has the attractive property that

r1(G) = r1(Ḡ); however, r1 does not distinguish between
graphs which are symmetric due to having many recipro-
cated edges, versus graphs which are extremely sparse (and
therefore contain many null dyads). One measure which
does make such a distinction is the fraction of symmetric
non-null dyads, or r2(G) ≡ M/(M + A), although this does
not lead to a very natural interpretation. A more natural
index is the fraction of reciprocated edges, or r3(G) ≡ M/
(M + A/2), which can be thought of as the probability that a
randomly selected edge within the graph will be recipro-
cated. While r3 is very intuitive, it is still important to
evaluate it against a known baseline, such as the back-
ground density of the graph. An example of a slightly
more sophisticated index with such properties is

r G
M M A N

M A
4 22
( ) ≡ + +( )

+( )
ln , or the logged relative risk of a

reciprocating edge versus the baseline risk. Note that, with
the exception of r1, these measures are not well defined on
empty graphs; empty graphs are generally taken to be fully
reciprocal by definition, but this convention is not univer-
sally accepted.

Clearly, the r measures are measures of reciprocity; each
is dual, however, to a measure of hierarchy. With the excep-
tion of r4, hierarchy can be measured by hi(G) = 1 - ri(G),
translating (respectively) to the fraction of asymmetric
dyads, the fraction of asymmetric non-null dyads, and the
fraction of unreciprocated edges. In the case of r4, some
adjustment is necessary - the natural parallel is the logged
relative risk of an unreciprocated edge, versus the corre-
sponding baseline. This change leads to the corresponding

index h G
A M A N

M A A N
4

2 2
( ) ≡ + +( )

+( ) +( )
ln . As with the r indices,

the h measures are local, and depend only on the dyad
census. This makes them easy to estimate where G has been
sampled (Frank, 1978), and relatively robust to measure-
ment error. However, there are other aspects of hierarchy
which cannot be captured via dyadic structure alone.

Beyond the local hierarchy measures derived from the
dyad census, researchers have defined a number of global
measures for quantifying asymmetry. Possibly the simplest
of these is given by Krackhardt (1994), whose hierarchy
measure is equal to the fraction of weakly connected
dyads which are not strongly connected. Formally, we may
express this measure in terms of the reachability graph of
G, which is defined as the digraph R = (V(G), E�) such that
(v, v�) ∈ E� iff there exists a path from v to v� in G. If R
is the reachability graph of G, then Krackhardt’s hierarchy
measure is given by h2(R); intuitively, this corresponds to
the fraction of pairs who can interact at some distance, but
for whom this capacity to interact is not mutual. A more
complex measure is given by Hummon and Fararo (1995),
whose hierarchy index generalizes the notion of ‘level’.
Consider a simplified hierarchical structure, in which we
have v1 → v2, v2 → v3, . . . vn-1 → vn and no other edges.
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Such a structure is said to have n levels, each level con-
sisting of a position which sends an edge to the one imme-
diately below it (for levels above the last) and receives an
edge from the one immediately above it (for levels below
the first). Such a strict case could be generalized by allow-
ing each position to consist not only of a single vertex, but
rather a set of vertices which are mutually reachable from
one another (i.e. which are strongly connected). In this
case, we can think of the levels as forming a partial rank
structure on the graph, such that v � v� iff G contains a
(v�, v) path. The more levels within the graph, the finer the
ranking distinctions which it admits. Of course, real struc-
tures may not decompose neatly into levels: there may be
multiple ‘chains’ of strong components which are asym-
metrically connected. Hummon and Fararo’s hierarchy
measure deals with this by considering the finest range of
rank-order distinctions which can be made using the given
structure. Specifically, let G� be the graph minor formed
by condensing the strong components of G into single
vertices. Clearly, G� contains no strong component of size
greater than 1 (as, if so, it could be further reduced); thus,
the vertices of G� are asymmetrically connected. The
Hummon-Fararo hierarchy of G is then the longest path in
G�. To the extent that G approximates a ‘clean’, multilevel
structure, the H-F hierarchy will approach n - 1. At the
opposite extreme, in which G is strongly connected, the
H-F hierarchy is equal to 0. The H-F hierarchy thus goes
beyond the mere extent of local or global asymmetry,
quantifying the extent to which that asymmetry is linearly
organized. (The relative incidence of transitive versus
cyclic triads (mentioned above) can be used in a similar
fashion.)

Connectivity indices: A final class of indices we shall
consider are those which describe the connectivity proper-
ties of a network (i.e. the extent to which the individuals
within the network can reach one another via direct or
indirect connections). Density, which we have already seen,
can be thought of as the most primitive index of this form:
as density can be interpreted as the marginal probability of
an edge from any given vertex v to some other vertex v�, it
is necessarily a measure of local connectivity. However,
density per se does not tell us about non-local connections
between vertices, and is thus not a very satisfying index in
this regard. Various alternatives have been developed which
provide a more refined view of network connectivity, and
we consider several of these here.

At the opposite extreme from density, one obvious con-
nectivity index is the number of components in a graph. As
there are four basic component types in the directed case
(weak, unilateral, strong, and recursive), four such counts
are possible for a given digraph (vs one in the undirected
case). Intuitively, the more components within a given
graph, the less well connected the associated network; nor-
malizing by n to obtain the number of components per

vertex gives a less order-dependent measure of fragmenta-
tion. To map this measure to the [0, 1] interval, a connec-
tivity index such as (n - K(G))/(n - 1) (where K(G) is the
number of components of G, and n � 2) may prove useful.
This index is equal to 1 in the fully connected case (i.e. G
has one component) and takes a value of 0 when G is fully
disconnected (i.e. G is composed entirely of isolates).
Although global in character, this index has the disadvan-
tage of not permitting fine distinctions regarding degrees of
connectivity, especially in small groups. For this purpose, it
may be useful to consider the fraction of dyads which can
reach one another by some criterion or another. This is the
intuition behind Krackhardt’s (1994) connectedness index,
which is equal to the fraction of weakly connected dyads in
G. When Krackhardt’s connectedness is equal to 0, no
vertex can reach any other via a semipath in the underlying
network; as the number of pairs which are connected by
semipaths increases, the measure approaches 1. While this
index is more refined than the simple connectivity index
described above, it is still unable to distinguish among
weakly connected graphs (all of which have Krackhardt
connectedness scores of 1). A simple modification of
Krackhardt’s index for directed graphs would thus be to
consider the fraction of vertex pairs that are unilaterally,
strongly, or recursively connected in G. By using a more
stringent definition of connectedness, it is possible to dis-
tinguish between levels of connectivity even among weakly
connected digraphs.

Yet another approach to connectivity comes from the
notion of cutsets. A subgraph H ⊂ G is said to be a cutset
of G if removing H increases the number of components in
G. A vertex v which is a cutset for G is said to be a cut
vertex (or cut point) of G, and an edge which is a cutset
for G is similarly known as a cut edge. (Note that when a
vertex is removed, all of its associated edges are removed
as well - this is not the case when removing edges, whose
end-points are left intact.) Intuitively, we may think of a
graph as being better connected when it takes the removal
of many elements to break it into smaller components.
Such graphs are also said to be ‘robust’, an expression
which highlights the fact that the potential for communi-
cation among elements in such networks is resistant to
disruption via the failure of individual network elements
(see Klau & Weiskircher, 2005 for an in-depth review).
The extent to which a graph exhibits such robustness may
be measured by the sizes of its minimum edge or vertex
cut (i.e. the minimum number of edges or vertices, respec-
tively, needed to increase the number of components in G).
These numbers are, respectively, known as the edge and
vertex connectivities of G, and can be considered graph-
level connectivity indices. Conventionally, a graph is said
to be k-connected if its minimum vertex cut is of size k,
with higher values of k clearly indicating more robust (and
better connected) networks. In the undirected case, it is
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known that k � h if and only if G contains at least h span-
ning cycles (Berge, 1962), and connectivity is thus related
to other structural properties such as the incidence of long-
range cycles. When applied to subgraphs (rather than to
the graph as a whole), connectivity has also been taken to
be an indicator of cohesion (Moody & White, 2003); the
concept has thus proved to be useful at multiple levels of
analysis.

Conditional uniform graph tests

In evaluating graph-level indices, it is frequently useful to
compare observed index values against those which would
be obtained by a baseline model with known substantive
properties (see Mayhew, 1984a, b, for a forceful articula-
tion of the baseline modelling approach). By noting the
extent and direction of deviation of indices from their base-
line distributions, we may detect the presence of structural
biases within the networks under study; these, in turn, may
provide useful clues regarding the mechanisms underlying
the data in question. One important family of baseline
models for network data is the family of conditional
uniform graph (CUG) distributions. A CUG distribution
may defined as follows. Let � be the set of all graphs, let
t = (t1, . . . , tn) be a tuple of real-valued functions on �,
let x ∈�n be a known vector, and let IA(x) be an indicator
function returning 1 if x ∈ A and 0 otherwise. Then the
distribution

Pr ,G g g g I gg g=( ) = ′ ∈ ′( ) ={ }[ ] ( )−
′∈ ′( )={ }t x t x t x� �: :

1 (9)

is said to be the conditional uniform graph distribution with
sufficient statistic t taking value x. As Equation 9 implies,
the CUG distribution fixes certain properties of G (specified
by t) at particular values (specified by x), and treats all
graphs meeting those criteria as equally probable. CUG
distributions are among the oldest and most widely used
models for network data, and are used for their simplicity as
well as for their statistical properties.

One the simplest families of CUG distributions is the
family of order-conditioned uniform graphs. These distri-
butions are defined by setting t = (|V|) and, hence, treat all
graphs of a specific size as equiprobable. Although math-
ematically interesting, these models are generally very
poor approximations of social network structure and, as
such, are of limited scientific value. A slightly more
sophisticated model is the so-called ‘N, m’ family popu-
larized by Erdös and Rényi (1960), which is defined by
setting t = (|V|, |E|). This model conditions on both size
and density, and is a rather better approximation to real-
world networks (which tend to be fairly sparse). Other
familiar models include the U|MAN family (which condi-
tions on the dyad census; see Holland & Leinhardt, 1975),
and the family of degree-conditioned uniform random

graphs (Snijders, 1991). The former model family builds
on the N, m model by capturing biases towards or away
from reciprocity (a very important effect in real-world net-
works), while the latter allows for features such as excess
degree centralization which are frequently encountered in
social settings. We note that while CUG distributions need
not condition on graph size, all distributions currently in
active use do so. It should also be noted that the distribu-
tion of Equation 9 is only well defined where there exists
G ∈� such that t(G) = x. Careless choice of conditioning
statistics may result in distributions that are degenerate
(admitting only one isomorphism class), and/or ill-defined
(admitting no graphs at all).

While conditional uniform graph distributions are used
for a number of purposes (including baselines for simu-
lation studies, and minimally informative priors for Baye-
sian analysis (Butts, 2003)), one of the most important is
the conditional uniform graph test (or CUG test) proce-
dure.5 Formally, the CUG test is a test of the hypothesis
that an observed statistic, s(g), was drawn from the dis-
tribution of s arising from the CUG distribution specified
by t, x. Such hypotheses are generally one-sided; the
p-value for the upper tail test is then Pr(s(G) � s(g)|t, (x),
with Pr(s(G) � s(g)|t, (x) providing the p-value for the
corresponding lower tail test. Frequently, the value of x
used is that associated with the observed graph (i.e.
x = t(g)). For instance, if one wanted to determine
whether the degree of centralization of a given structure
was greater than would be expected from its size and
density alone, one might perform an upper tail CUG test
of the centralization score against the N, m distribution
(with N and m set to match their values in the observed
graph). A low p-value for the associated test would
suggest that the observed graph is more centralized than
would be anticipated from its size and density and, hence,
that some additional process or constraint might be at
work. Further tests based on additional constraints (e.g.
reciprocity, number of isolates etc.) could, in turn, be used
to provide clues as to the nature of the bias giving rise to
the high level of observed centralization. Indeed, the
simultaneous use of tests against multiple (often nested)
models is a powerful means of discriminating among
competing explanations for the sources of structural
biases, and is strongly recommended. A common strategy
is to begin with a simple baseline (e.g. the order-
conditioned model), experimenting with various con-
straints until one arrives at a minimal set of conditioning
statistics which are sufficient to account for the observa-
tion in hand. These statistics are then used to localize the
deviations from uniformity found within the observed
graph. For a more detailed quantitative analysis of how
these biases interact, it is generally necessary to turn to a
more elaborate modelling strategy; we now proceed to a
discussion of one such approach.
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Exponential random graph models

As we have seen, the essential logic of the conditional
uniform graph lies in evaluating the quantile of a structural
statistic with respect to a baseline distribution on the set of
possible structures. It is immediate to ask whether that
extremity might be directly parameterized, rather than
simply used to perform a dichotomous statistical decision
(as in the case of null hypothesis tests). The affirmative
answer to this question was provided by a line of work
originating with Holland and Leinhardt (1981), and later
extended by Frank and Strauss (1986), Wasserman and
Pattison (1996), and others. Following the development of
conditional uniform graph tests above, let t be a vector of
sufficient statistics, and let G ⊆� be a countable graph set.
We may then write a probability mass function (PMF) on
G in the form

Pr ,
exp

exp
,G g

g

g
I g

T

g
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=( ) = ( )( )

′( )( ) ( )
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t

t
θ θ

θ
G
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where θ ∈�n is a known parameter vector and IG is an
indicator function for G . Intuitively, Equation 10 expresses
the probability of observing any particular graph as being
proportional to an exponentiated linear predictor, itself a
weighted combination of structural characteristics. Graphs
with higher values of ti thus become increasingly probable
as qi → •, or (by turns) become less probable as qi → -•.
In the special case of q = 0, t receives no weight, and the
CUG distribution on G is recovered.

It should be emphasized that any probability distribution
on G can be written in the form of Equation 10;6 thus, the
above is less a probability model than a method for param-
eterizing such models. More properly, Equation 10
describes a discrete exponential family of random graphs.
Models written in this form are referred to more succinctly
as exponential random graph (ERG) models, or (in older
literature) ‘p*’ models. The fact that all existing graph
distributions (including, as noted, the CUG families) can be
written in exponential family form allows the ERG frame-
work to serve as a ‘lingua franca’ for models of network
structure per se; although there do exist extended models
(e.g. networks with endogenous nodal covariates (Robins,
Pattison, & Elliott, 2001)) which do not belong to this class,
it is nevertheless broad enough to have wide utility in prac-
tice. Much of the value of this unifying framework lies in its
facilitation of tasks such as estimation of structural biases
or prediction of network properties. Given methods for
performing such tasks in the general ERG case, application
to specific modelling scenarios becomes (in principle) a
simple matter of writing the new model in ERG form and
using the method in question. In practice, matters are not
always so simple; in particular, the computational difficul-
ties associated with simulation and model fitting can be

severe for certain subfamilies (Handcock, 2003), but the
approach is broadly effective in many settings. Beyond
these considerations, the large body of statistical literature
on discrete exponential family models in other contexts
aids in the development of new insights regarding the
behaviour of network models. Important examples of such
cross-application of findings from the statistical literature
to the literature on network methods include work on the
use of dependency graphs in constructing network models
(Frank & Strauss, 1986; Pattison & Robins, 2002) and
phenomena such as ‘degeneracy’ (Strauss, 1986; Hand-
cock, 2003).

While the literature on exponential random graph
methods is too large to be easily summarized here (see
Wasserman & Robins, 2005 for a recent review), a few
important points are worth mentioning. First, the ERG
framework provides a natural way to extend the conditional
uniform graph concept described earlier. Rather than com-
paring observed graph statistics to a CUG distribution, the
parallel ERG approach involves fitting parameters corre-
sponding to the statistics in question. These parameters are
then inspected to determine the strength and direction of
structural biases which are inferred to have given rise to the
observed graph. As zero-valued parameters may always be
interpreted as reflecting no (conditional) bias on the asso-
ciated statistic, it follows that null hypothesis tests on the
parameters may be used in much the same manner as CUG
tests. Unlike CUG tests, however, ERG modelling allows
for the evaluation of a wider range of hypotheses (including
those interactions between biases on multiple statistics). A
second important feature of the ERG framework is that it
provides a basis for likelihood-based inference. Maximum-
likelihood based estimates for q given t can be calculated
using a number of methods (Crouch, Wasserman, & Tra-
chtenburg, 1998; Snijders, 2002), and Bayesian approaches
are also possible. One particularly useful result with respect
to the former is the fact that E t tθ̂ G g( ) = ( )where θ̂ is the
maximum-likelihood estimator (MLE) of q given observed
graph g. Thus, first-order method-of-moments estimators
correspond to MLE for ERG; while this is not the most
efficient method of computation, it is a useful fall-back
method in many settings. This relationship hints at another
important insight regarding the ERG parameterization:
models in this form can be understood as providing distri-
butions of maximum entropy over their support, conditional
on fixing the expected sufficient statistics (as determined by
q) (Brown, 1986; Strauss, 1986). Thus, ERG can be used to
construct extended baseline models of network structure, in
which it is assumed that realized networks are maximally
‘random’ given the average values of their sufficient statis-
tics. (Compare this to the CUG approach of assuming
maximum entropy conditional on the exact values of
selected sufficient statistics.) A third (and related) aspect of
the ERG parameterization is that it facilitates the construc-
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tion of network models which implement specific forms of
dependence among edges. This construction is performed
principally by application of the Hammersley-Clifford
Theorem (Besag, 1974) to the dependence graph corre-
sponding to the desired model (see Wasserman & Robins,
2005 for a discussion), although additional ‘parameter fil-
tering’ methods are sometimes required (Pattison &
Robins, 2002; Butts, 2006a). A rather remarkable result of
this work has been the discovery of a deep duality between
structural features (as measured by various indices) and
dependence among edges. In particular, each potential
choice of t implies a certain class of dependencies, and vice
versa. The realization of this connection greatly facilitates
the development of empirically grounded theory regarding
social interaction (see Robins & Pattison, 2005, for a dis-
cussion), and is likely to be the basis for a great deal of
research in the years ahead. Finally, it should be noted that
the ERG form of Equation 10 can be extended in a number
of ways to incorporate nodal covariates, multiple networks
etc. One of these extensions (to multiple networks) will be
considered further below.

Network comparison

Although much of the literature on social networks is
focused on the measurement and modelling of features
within particular networks, another important class of prob-
lems involves comparing structure across networks. Such
problems naturally arise when we ask whether a particular
intervention affects team structure, whether participation in
one relation affects participation in others, or whether a
particular collection of relations (e.g. expert mental
models) reflect variations on a single underlying ‘theme’.
Here, I review three general approaches to network com-
parison (conditional uniform graph tests, linear subspace
methods, and exponential family models), and describe
some of the relative strengths and weaknesses of each
approach.

Multivariate CUG tests

An immediate method of comparing networks is via their
respective graph-level index values. A difficulty with this
approach, however, is the fact that many GLI vary in non-
trivial ways with the size and density of the networks under
comparison. To determine whether differences in GLI
values reflect substantive structural effects - as opposed to
differences stemming from background features such as
size - it is necessary to invoke a baseline model of some
sort. Anderson, Butts, and Carley (1999) suggest using a
variant of the conditional uniform graph approach dis-
cussed above as such a baseline when comparing graphs. In
particular, let t be a real-valued vector of conditioning

statistics, let x1, . . . , xm be real-valued vectors, and G1, . . . ,
Gm be a set of graphs. We then posit a multivariate gener-
alization of the conditional uniform graph distribution of
Equation 9,
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As in the univariate case, t may consist of statistics such
as network size, number of edges, the dyad census etc.
Here, however, these statistics are specified for all graphs in
the set (as opposed to a single graph).

To use the multivariate CUG distribution in the context
of graph comparison, we first identify the multivariate sta-
tistic s on �m to be tested. In the bivariate case, s will
usually be a difference in GLI values for the two input
graphs (or the absolute value of such a difference); other
functions are possible, however. We then set x1, . . . , xm to
form the hypothesis which is to be tested. Typically, we will
seek to condition on the values of t in the observed net-
works g1, . . . , gm, and, hence, will require that (x1, . . . ,
xm) = (t(g1), . . . , t(gm)). The one-tailed p-values for
s(g1, . . . , gm) under the corresponding multivariate CUG
test are then

Pr , . . . , , . . . , , , . . . ,s G G s g gm m m1 1 1( ) ≥ ( )( )t x x

for the upper tail, and

Pr , . . . , , . . . , , , . . . ,s G G s g gm m m1 1 1( ) ≤ ( )( )t x x

for the lower tail. Note that a ‘two-tailed’ test of GLI dif-
ferences can be implemented here by defining s(G1,
G2) = |f(G1) - f(G2)| (for GLI f) and using the p-value asso-
ciated with an upper-tail test. This last test can be inter-
preted as assessing the extent to which the absolute
difference between GLI scores is large compared to the
distribution of absolute differences which would be
expected to arise, given the choice of conditioning statis-
tics. A low p-value for such a test suggests that the differ-
ence in GLI scores for the graphs in question is larger than
would be expected under the baseline model, suggesting the
possibility that more subtle structural mechanisms may be
at work. A large p-value, however, indicates that the differ-
ence in observed statistics is not particularly large com-
pared to the baseline model, and calls into question whether
additional explanations are needed.

Linear subspace methods

In some cases, we may wish to compare two graphs G, G�
on some common vertex set, V. For instance, let us imagine
that G1 represents a network of positive interpersonal evalu-
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ations and G2 represents a network of event coparticipation
for the members of some group; we might then seek to test
the hypothesis that coparticipation is positively associated
with positive interpersonal evaluations among group
members. As the vertex sets for G1 and G2 are shared, this
is properly seen as a problem of edge set comparison,
which is a special case of the more general graph compari-
son problem. Hubert (1987) postulated a simple approach
to edge set comparison based on the use of matrix product-
moment statistics, which was further developed in the
social network context by Krackhardt (1987b, 1988). As
pointed out by Butts and Carley (2001, 2005), this approach
is properly regarded as the application of linear subspace
methods to graph sets, in direct analogy with the use of
such methods in conventional multivariate data analysis;
these authors also explore the use of closely related
distance-based methods (following Banks & Carley, 1994),
which will not be treated here.

The central element of the linear subspace methods for
graph comparison is the graph covariance, which is defined
as

cov ,G G
n

Y Y
i

n

j

n

ij ij′( ) = −( ) ′ − ′( )
= =
∑∑1

2
1 1

μ μ (13)

where Y and Y� are the respective adjacency matrices of
G and G�, and m and m� are the respective means of these
adjacency matrices. (Note that diagonals elements should
be treated as missing if loops are not allowed; for sim-
plicity, we use the notation for the general case.) Intu-
itively, the graph covariance is simply the covariance
of the two adjacency matrices, taken as a collection of
edge variables. As one would then expect, cov(G, G)
= var(G) is the graph variance of G, leading to the

graph correlation ρ G G G G G G, cov , var var′( ) = ′( ) ( ) ′( ) .
Graph correlations/covariances can be used directly to
compare graphs, in the manner discussed by Krackhardt
(1987b): tests for the observed magnitude of these com-
parison statistics can be conducted using the quadratic
assignment procedure (QAP) of Hubert (1987), which
controls for the effects of row, column, and block auto-
correlation (all of which are common in network data).
The QAP test is a simple matrix permutation test, in
which the observed graph statistic (here, correlation or
covariance) is compared to the distribution of such statis-
tics arising from the simultaneous row/column permuta-
tion of the respective adjacency matrices. Specifically, let
� be a random permutation of the integers 1, . . . , n, and
let t be a bivariate graph statistic. Then the null distribu-
tion of t under the QAP hypothesis is the distribution of
t(Y, ′Y��), where ′Y�� is the adjacency matrix Y� row/
column reordered by �; this is equivalent to the distribu-
tion of t(G, �(G�)), using the graph permutation notation
developed earlier. This procedure controls for all purely

structural properties of the graphs being compared and, as
such, effectively tests the hypothesis that the degree of
association induced by the observed labelling of the two
networks can be explained by their underlying structure.
Rejection of this hypothesis suggests the possibility that
the elements of each network have been positioned in a
way which specifically induces a stronger degree of asso-
ciation (or disassociation) between the two networks than
would be expected given their respective structures. More
intuitively, the bivariate QAP test can be thought of as
comparing the degree of observed association between
networks to that which would be expected to arise from a
process in which individuals were randomly assigned to
positions within the two networks, holding the structure
constant. If ties between positions coincide more (or less)
frequently than this process would indicate, this may
suggest that some other social process is at work.

In addition to tests for bivariate association, the graph
covariance/correlation can be used for multivariate analysis
of graph sets. Given a graph set G1, . . . , Gm, one can
construct a graph covariance or correlation matrix in pre-
cisely the same manner as one would construct a covariance
or correlation matrix for conventional variables. These
matrices can then be used to obtain solutions for linear
regression, principal component analysis, canonical corre-
lation analysis, or other linear subspace analyses, just as in
conventional multivariate analysis (Mardia, Kent, & Bibby,
1979). Of these solutions, linear regression has been the
most widely used (following the early incorporation of the
approach of Krackhardt (1988) into software packages such
as UCINET (Borgatti, Everett, & Freeman, 1999)); alterna-
tives such as canonical correlation analysis have been avail-
able in some software packages for several years (e.g. the
sna package for R (Butts, 2000)), but have not thus far seen
extensive use. As most network data are dichotomous,
linear analyses are rarely plausible as data models -
however, they can be highly effective as tools for explor-
atory data analysis. Given a large collection of networks,
linear subspace methods such as principal component
analysis can identify associations among structures, and
can identify underlying ‘structural factors’ which can par-
simoniously explain variation in a larger set of relations.
The insights resulting from such analyses can then be used
in constructing more principled data models, such as those
discussed below.

Exponential family models

While exponential family parameterizations have been
most frequently used in the modelling of single networks,
this is not a fundamental restriction. In fact, this framework
can be easily extended to encompass multiple relations,
either on shared or distinct vertex sets. Here, we briefly
review two approaches to the use of discrete exponential
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family models to the problem of graph comparison. The
first (based on graph permutations, or re-assignment of
individual positions) can be seen as a model-based exten-
sion of the philosophy of Hubert (1987). The second
involves the direct modelling of multiple networks from a
common set of sufficient statistics. Both approaches are
relatively recent entrants to the literature, and it is expected
that this area will see much development over the next
several years.

Permutation models. A major limitation of the linear sub-
space models described above is that they are poorly suited
to dichotomous data: this makes coefficients difficult to
interpret, and effectively negates the plausibility of the
associated models as data-generation mechanisms. Simi-
larly, such models provide little principled basis for infer-
ence, as they do not posit a likelihood for the set of
observed networks. A recently developed approach which
overcomes these limitations is the use of permutation
models to compare graphs or graph sets (Butts, 2007). Let
us consider a case in which we have two sets of graphs,
G1, . . . , Gm and ′G1 , . . . , ′Gp on common vertex set V. For
convenience, I will represent the adjacency structures of
each graph set by the respective arrays Y and Y�, such that
Yijk is the j, kth entry of the adjacency matrix of Gi, and
′Yijk is the j, kth entry of the adjacency matrix of ′Gi . As in

the discussion of the QAP test, let � be a permutation vector
on 1, . . . , n (reflecting a potential vertex ordering), and let
′Y.�� reflect the adjacency array for ′G1 , . . . , ′Gp , with all

vertices permuted by �. I then posit a model for the assign-
ment of vertices to positions in one graph set relative to the
other (i.e. for the vector �) using the following discrete
exponential family PMF:
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L here defines the support of �, and is known as the set
of accessible permutations. q and t are both assumed to take
values in �h, as with the ERG model of Equation 10. The
primary difference here is that we are modelling not the
network structures per se, but the ‘assignment’ of individu-
als to positions within the existing networks. Indeed, we
condition on the network structures themselves and, in so
doing, control for all sources of within-graph (and within
graph set) autocorrelation. The cost of this manoeuvre is
some loss of information, as the support of � is generally
much smaller than the support of G1, . . . , Gm and ′G1 , . . . ,
′Gp would be in the absence of conditioning (see below).

One compensation for this loss, however, is that the model
can be easily applied to arbitrarily valued data, something
which is not true of conventional exponential random graph
models.7

As Equation 14 defines an exponential family on
a set of graph permutations, Butts (2007) refers to
this as the ‘exponential random graph permutation’
(ERGP) family of models. Although Butts’s treatment
is restricted to the product moment statistics
Γ Σ ΣY Yi i j

n
k
n

ijk iY Y j k.., ′( ) = ′= =�� � �1 1 (better known as Hubert’s
Gamma), t can be chosen to be any statistic which is not
invariant to �. This includes the cross-graph statistics
derived by Pattison and Wasserman (1999), but excludes
statistics which depend only on single graphs (or on graphs
chosen strictly from within the two comparison sets). Butts
provides methods for simulation and inference for ERGP
models, and discusses connections with procedures such as
the QAP test. Butts also notes that the ERGP has a non-
empty intersection with the general family of multivariate
exponential random graph models, which can be used to
model general joint distributions on graph sets. We thus
turn next to this family of models.

Multivariate ERG models. Just as the ‘univariate’ model of
Equation 10 expressed a probability model for a single
network in terms of a set of sufficient statistics, so too can
we construct ‘multivariate’ exponential family models
(MERG) for sets of graphs (Pattison & Wasserman, 1999).
Formally, let G1, . . . , Gm be graphs drawn from a distribu-
tion with finite joint support G G1 × ×� m, let θ ∈�h be a
parameter vector, and let t be a vector of sufficient statistics
taking G G1× ×� m into �h. Then we may write a PMF for
the joint distribution of G1, . . . , Gm of the form
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(with I being, as in Equation 10, a dichotomous indicator
function for membership in the support). The MERG
family is a direct generalization of the ERG family, and can
be interpreted in the same manner. In particular, the model
posits that graph sets with larger values of ti become more
probable as qi → • (ceteris paribus), and less probable as
qi → -•. As t, in this case, is a function of the graph set as
a whole, the MERG can directly parameterize arbitrary
dependence between (as well as within) graphs; note that
this is not necessary, however, as any given statistic can be
made to depend on only a single graph. As such, the MERG
takes the ‘univariate’ ERG as a special case, and a product
of disjoint ERG distributions is equivalent to a correspond-
ing MERG in which no sufficient statistic depends on more
than one input graph. Simulation and inference for MERG
is conducted exactly as for the ERG case, with the compli-
cation that the support involves multiple graphs. Thus, the
computational cost of working with MERG models may be
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substantially higher than ERG, although the underlying
methods are the same. The simultaneous treatment of mul-
tiple networks does offer the possibility of a range of new
forms of dependence, each corresponding to new sets of
sufficient statistics. Pattison and Wasserman (1999) and
Koehly and Pattison (2005) have demonstrated a number of
distinct statistics for multivariate exponential family
models, based on such dependence hypotheses, offering
rich opportunities for model construction in this area.

Analysis of nodal covariates

Although the foregoing has focused on the measurement
and modelling of network structure per se, nodal covariates
are also of interest in many settings. In the case of social
influence, for instance, we may be interested in how indi-
viduals’ attitudes affect one another through a social
network. Similarly, we may seek to determine having large
numbers of ties to close friends and family is predictive of
mental health outcomes, or, alternatively, whether such out-
comes may impact one’s social position. Although analysis
of nodal covariates may, in some cases, be carried out using
traditional statistical methods, the interdependence of
structural properties (and, in the case of influence pro-
cesses, the covariates themselves) sometimes require the
use of alternative methods. Here I briefly review some of
these approaches, and provide suggestions regarding their
effective use.

Node-level indices and node-level attributes

An enduring line of inquiry within the social network
field concerns the relationship between node-level
attributes, and the contrasting properties of structural posi-
tions. Such questions arise naturally from theories which
posit differences in social behaviour and/or positional
attainment due to exogenous covariates, differences in
outcomes due to differing social position etc., and can
take many forms. While not all position/attribute ques-
tions fall into this category, many such queries lead natu-
rally to analyses which directly relate node-level indices
to nodal covariates.

Where one’s objective is the prediction of nodal covari-
ates from node-level indices and where conditional inde-
pendence of covariate values can be assumed, traditional
methods (e.g. generalized linear models) may usually be
used without special difficulty. More serious concerns arise
where node-level indices are taken as dependent variables,
or where measures of symmetric association (e.g. correla-
tion) are to be evaluated. The primary difficulties here are
two-fold: the fact that node-level index values typically
exhibit intrinsic dependence, and the fact that conditional
normal models are often poorly suited to describing index

distributions. In a regression context, standard transforma-
tion methods and/or modified models such as tobit or quan-
tile regression (Tobin, 1958; Koenker & Bassett, 1978) can
prove helpful in alleviating the latter problem. The issue of
dependence is, in some ways, more complicated and cannot
be entirely resolved without the use of exponential family
models (see above). In many contexts, however, it is pos-
sible to test simple hypotheses of association by means
of permutation tests (much like the QAP case described
above). In particular, the observed value of an association
statistic for a vector of node-level index values versus a
vector or matrix of nodal covariates can be compared with
the value of the statistic arising from repeated permutations
of the index distribution. As this procedure preserves the
joint distribution of the indices (effectively ‘moving’ indi-
viduals while keeping network structure fixed), it is non-
parametric with respect to the index distribution per se.
Standard considerations regarding the use of (vector) per-
mutation tests apply here; a reasonable general-purpose
reference is Good (2000).

As a final cautionary, it must be stressed that the node-
level index/nodal covariate approach can easily be over-
used. Many social process theories, in particular, argue that
the properties of one’s alters are as important as the con-
figural aspects of one’s network position, and may make no
direct predictions regarding the effect of the latter quanti-
ties per se. For example, most theories of social influence
(e.g. Latané, 1981; Butts, 1998; Freidkin, 1998) posit that
individuals will tend to adopt the attitudes and/or beliefs of
their alters; thus, the predicted effect of features such as
centrality or ego network density cannot be specified inde-
pendent of alters’ attributes. Use of purely structural mea-
sures to assess covariate-based theories is incorrect, and
will yield misleading inferences.

Network autocorrelation, influence,
and diffusion

Frequently, nodal covariates are not socially exogenous, but
are, at least partially, the result of interaction between indi-
viduals. Even where one’s primary interest is in the impact
of covariates which are hypothesized to have socially exog-
enous effects, failure to control for social endogeneity can
lead to extremely misleading results. An important family
of regression-like models which can be used to capture
and/or control for such effects is the family of (linear)
network autoregressive/moving average (ARMA) models.
Network ARMA models (Doreian, 1989, 1990) treat indi-
vidual nodes’ covariate values as potentially dependent
upon the values of neighbours’ covariates, as well as upon
exogenous covariates and (possibly dependent) shocks. In
this they can be seen as a natural generalization of models
for temporal and spatial dependence. (In fact, the network
ARMA model is formally identical to the spatial ARMA
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(SARMA) model (Cliff & Ord, 1973; Anselin, 1988) which
is widely used in geographical settings. The two differ only
in terminology and application.)

Network ARMA models comprise a standard regression
model combined with two components: an autoregressive
(AR) component, which models the direct dependence of
observations upon one another; and a moving-average
(MA) component, which models the dependence among the
exogenous perturbations, or errors. These two components
act in distinct ways, and one or both may be used in any
given setting. At the same time, the substantive difference
between the AR and MA processes can be subtle, and are a
frequent source of confusion. MA processes, for instance,
are sometimes said to be applicable only when measure-
ment errors are correlated across individuals; this is an
important issue in spatial settings, but is less common with
interpersonal networks. In general, however, it is appropri-
ate to use an MA process wherever one has reason to expect
the presence of exogenous shocks which are transmitted
through the social network independent of any covariate
effects. As an illustrative example, consider a model for
self-reported coping success, in the context of life difficul-
ties. Naturally, we expect that each individual will have his
or her share of good and bad luck, which enters the system
as an exogenous shock. Clearly, such shocks will interact
with each person’s individual attributes to determine his or
her success in coping; however, we may also hypothesize
that this process is not independent of the experiences of
friends and family members. One example of such a
process is one in which each person feels not only his or her
own shocks, but some weighted average of the total shocks
felt by his or her peers. Thus, good fortune on the part of a
given family member will aid the entire family (to some
extent, at least), whereas a corresponding misfortune will
have a negative impact. If these shocks diffuse indepen-
dently of each person’s actual success in coping with them,
then the result will behave as a network MA process. Alter-
natively, consider the possibility that each person’s coping
success depends not on his or her neighbours’ shocks alone,
but directly on his or her neighbours’ own levels of coping
success. In this case, the process in question is autoregres-
sive, and a network AR component is implicated. Note that
a key difference between the two cases is that neighbours’
covariates themselves have a diffusive effect in a network
AR process, whereas it is only the shocks or deviations
which diffuse in the MA case. In terms of our example,
being tied to someone with very poor coping skills will tend
to drag you down where coping is autoregressive, even if
his or her luck has been fairly good. By contrast, if coping
is a moving average process, it is only his or her luck which
will impact you. In many cases, it will not be obvious ex
ante which process is the correct one (or if both are active).
By fitting AR, MA, and ARMA models, this question can
be resolved empirically.

Frequently, it is assumed that any AR and/or MA effects
act through a single adjacency structure; this need not be
the case, however, and the generalization to network
ARMA models with multiple channels of dependence is
quite immediate. Specifically, let W1, . . . , Ww be the set of
adjacency matrices governing the AR process, and let
Z1, . . . , Zz be the corresponding adjacency matrices for the
MA process. These adjacency matrices need not be dichoto-
mous and, indeed, often should be valued (see below); we
interpret the j, k cell of each matrix as giving the weight
placed on node j by node i in the corresponding social
process. We also allow for the presence of a real-valued
covariate matrix, X, which is assumed to act directly on the
dependent variable, y. The network ARMA model may then
be defined as follows:
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where E 0v v v i ji j( ) = ⊥ ∀, , . Positing a parametric form for
v (typically iid normal with unknown constant variance s2)
permits model estimation using maximum likelihood using
standard methods. A more useful form for this purpose is
obtained by solving Equations 16 and 17 for y and e,
respectively. Specifically, we have
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and, similarly,
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These solutions exist only when the aggregated weight
matrices W W* = =Σ i

w
i i1θ and Z Z* = =Σ i

z
i i1ψ are invertible.

This, in turn, amounts to the condition that each of the W
and Z matrices is invertible. Setting q and/or f to zero leads
to the network MA, network AR, or standard regression
models, respectively; these can thus be considered submod-
els of the joint ARMA process.

Extensive research on the network AR model as a model
for social influence in small group settings has been carried
out by Friedkin and Johnsen (Friedkin & Johnsen, 1990;
Friedkin & Cook, 1991; Freidkin, 1998). Results from a
large body of experiments performed by these researchers
have suggested that (in the case of influence processes for
attitudes) the aggregate AR weight matrix W* should
nearly always be non-negative and quasi-convex (i.e. that
Σ j

n
ij= ≤1 1W* ) in typical settings. In practical terms, this con-

dition corresponds to a process in which final opinions are
contained within (or exist on the boundary of) the convex
hull of initial opinions. Given that this constraint appears to
be satisfied by observed discussion groups, it seems rea-
sonable to posit quasi-convexity in similar settings. This
and a number of other theoretical issues regarding network
AR models for social influence are discussed in Freidkin
(1998).

In addition to influence, network autocorrelation models
have been proposed as potentially useful tools for the study
of diffusion (see Valente, 2005 for a discussion). A great
deal of caution is advised here, however, as the linear
process on which the network ARMA model is based may
not be satisfied by such data. Another significant concern is
the choice of potential weight matrices in practical settings.
A review of many potential options, and a discussion of the
relevant issues can be found in Leenders (2002).

Discussion

In the preceding pages, we have considered a brief over-
view of common and useful methods for network analysis.
The scientific fruitfulness of such techniques, however, is
dependent upon the power of the theoretical framework in
whose service they are employed, and the match between
theory and method. Here I comment on a few related issues
that affect the use of social network analysis in practical
settings.

Choosing the right network

Whenever one engages in network analysis, it is important
not to lose sight of the fact that the relations being studied
are only a subset of those within which the associated
individuals are embedded. Essentially all persons live
within networks of physical interaction, material transac-

tions (e.g. exchange), interpersonal communication, mating
and sexual contact etc. Along with these, we have more
culturally specific networks of friendship and affiliation,
social support, ascribed kinship, and the like; persons living
within complex societies will additionally have non-trivial
networks of institutional affiliation, collaborative task per-
formance, advice and information sharing, training and
mentorship, and technologically mediated contact (among
many others). Further, this short enumeration says nothing
of the many networks which may be defined among con-
cepts, texts, organizations, or other non-human entities.
Given this diversity, it is highly misleading (at best) to
speak of ‘the’ social network in which a person or other
entity resides. An individual to whom no one comes for
professional advice may nevertheless have many friends,
and vice versa - it is unwise to jump to the conclusion that
an individual is generally socially isolated on the basis of
isolation in one relation, just is it is similarly unwise to
presume that an individual who is highly central in one
setting is highly central in all settings. Likewise, the global
properties of one relation on a given group may or may not
be reflective of other relations’ properties. For instance, an
organization with highly centralized reporting structures
may have very decentralized structures of informal com-
munication (perhaps to the chagrin of senior management).
Although the structures of multiple relations on the same
individuals may tend to coincide, this coincidence cannot
be taken for granted: social structure is rarely reducible to a
single network.

Given the reality of overlapping, multiplex structures in
social life, it is important that analysts select their networks
with the same care that they apply to selecting other vari-
ables of substantive interest. In particular, the networks that
are chosen for a particular application should be those
indicated by applicable substantive theory, and not simply
those that happen to be close at hand. While it is possible to
use one network as a proxy for another, unobserved rela-
tion, the reliability and validity of such a solution should be
empirically demonstrated rather than assumed on an a
priori basis. Similarly, it is important to ensure that the
network boundary which is used for a given analysis is
substantively justifiable. It may be reasonable to assume
that an individual living in a total institution (in the sense of
Goffman, 1961) will rely primarily on other members of his
or her organization for affective support, for instance, but
such an assumption would be very questionable within a
setting such as a voluntary interest group with infrequent
meetings. If an individual were to appear an isolate with
respect to support as measured in one of these settings, the
implications would hence be quite different. In particular, it
would be unreasonable to presume that a lack of support
within the voluntary group implies a lack of social
resources, as this population reflects only a small sub-
sample of potential alters. The naïve analyst may be
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tempted to conclude exactly that, however, falling prey to a
type of ‘tunnel vision’ which regards the network at hand as
a complete census of its members’ social interactions.
Careful attention to the substantive meaning of network ties
and the sampling process by which they are measured is
needed to avoid such errors.

Social process and structural signatures

Although our focus here has been on the analysis of ‘snap-
shots’ reflecting either instantaneous or time-averaged
structure, it should be emphasized that network analysis
can also play a role in the understanding of social pro-
cesses. Stable networks can serve as the context in which
phenomena such as social influence (Freidkin, 1998) and
bargaining (Willer, 1999) occur and, hence, interact with
low-level dynamics to shape social outcomes; such pro-
cesses have been explored through simulation studied
(Krackhardt, 1997; Butts, 1998), and are a target of ongoing
research. Likewise, there is a growing literature on the time
evolution of networks themselves (including both agent-
based (Carley, 1991) and statistical (Snijders, 1996)
approaches), which builds on the ‘static’ methods reviewed
here. Beyond these, however, it is also important to empha-
size that even static snapshots can contain the structural
signatures of the microprocesses giving rise to them and
can, hence, be used in many cases to test hypotheses regard-
ing such processes. Although this tradition extends back at
least to Rapoport (1949a, b, 1950) and Davis and Leinhardt
(1972), it has been considerably enhanced by recent work
on dependence graphs by Robins and Pattison (2005) and
others, and has stood behind much of the interest of the
physical science community in degree distributions
(Newman, 2003). As cross-sectional network data are much
more easily obtained than longitudinal data, there is much
to be said for its use in this regard. It is thus hoped that the
coming years will bring further innovations in linking
social dynamics to cross-sectional structure.

When networks are not enough

As has been emphasized, effective network analysis
depends as much on knowledge of the phenomenon at hand
as any other area of scientific study. An important compo-
nent of that knowledge is the recognition of where non-
network data are needed to resolve a question of substantive
or methodological importance. Although social networks
provide a powerful tool for understanding social
processes - and are of great scientific interest in their own
right - it is naïve to presume that all social scientific ques-
tions can be answered with network data alone. Information
on individual attributes, contextual variables, and social
processes can and should be combined with network data in

drawing conclusions regarding social phenomena, as
required by the theories being tested.

Conclusion

Social network analysis is a powerful family of tools for the
representation and analysis of relational data. I have here
reviewed some of the basic methods in this area, along with
the rudiments of study design and data collection. As an
area of active interest, the techniques of social network
analysis are likely to see considerable development in the
years ahead. By making use of these innovations, research-
ers in psychology and allied sciences can better predict and
account for the structural dimensions of social processes.
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End notes

1. For an insightful treatment of the latter, see Sussman and
Wisdom (2001).

2. Note that, where loops are not meaningful, most authors permit
adjacent vertices to be structurally equivalent despite the fact
that they do not belong to their own neighbourhoods.

3. Or, more accurately, it is local only to v’s component.
4. The use of these concepts within the social network literature

extends back at least to Holland and Leinhardt (1970) and
related papers, and accompany a corresponding history within
the mathematical literature in graph theory; recent reinventions
under names such as ‘motifs’ or ‘graphlets’ do not always
recognize this prior work.

5. Although terminology differs widely by author, this method
has been used at least since the work of Katz and Powell
(1953). See, for example, Holland and Leinhardt (1970, 1975);
Wasserman (1987); Snijders (1991); Anderson et al. (1999);
and Pattison, Wasserman, Robins, and Kanfer (2000) for
variants.

6. To see this, let ti(g) be an indicator for the ith element of G , and
qi = logit Pr(G = gi).

7. Exponential families for valued graphs are possible, but are
considerably less trivial to parameterize than non-valued ERG.
Robins, Pattison, and Wasserman (1999) provide one such
application, but a comprehensive treatment is not currently
available.
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