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Abstract

A method of hierarchical clustering for relational data is

presented, which begins by forming a new square matrix of product-

moment correlations between the columns (or rows) of the original data

(represented as an n x m matrix). Iterative application of this simple

procedure will in general converge to a matrix which may be permuted into

the blocked form [_~ -~J. This convergence property may be used as the

basis of an algorithm (CONCOR) for hierarchical clustering. The CONCOR

procedure is applied to several illustrative sets of social network

data and is found to give results which are highly compatible with

analyses and interpretations of the same data using the blockmodel

approach of White (in press). The results using CONCOR are then compared

with results obtained using alternative methods of clustering and scaling

(MDSCAL. INDSCAL. HICLUS. ADCLUS) on the same data sets.
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The first part of this paper describes an efficient algorithm for

simultaneous clustering ef ene er more matrices and develops

applications te sociemetric and other social structural data. 1 Although

the approach was eriginally motivated by app1icatiens to strictly

binary network data, the. algorithm can alse be applied te.matrices

reporting data in integer or continuous form (e.g., application te

Sampson's menastery data, pp. 32-38 below). The procedure hence

represents a techni'lue ef considerable generality and gives promise of

unifying a wide range of data analyses. From a formal point ef view,

the output of the algorithm may be represented as a hierarchical

clustering (see Figs. 4 and 9 below). Unlike standard hierarchical

clustering methods, however, the input to the present algorithm is not

necessarily a proximity or a distance matrix, but rather ene or more

matrices representing arbitrary kinds of relationship (see pp. 12 ff.

below) •

The secend part of the paper compares the results of the main

a1gerithm to these of multidimensional scaling algorithms applied to
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some of the same data (the MDSCAL algorithm of Shepard [1962a, b] and

Kruska1 [1964a, b] and the INDSCAL algorithm of Carroll and Chang [1970]).

This second part also reports exploratory sociometric applications of a

recent nonhierarchica1 clustering algorithm of Arabie and Shepard

(1973) •

PART 1. DESCRIPTION AND APPLICATION OF THE ALGORITHM

When several different disciplines encounter similar problems in

research, it often happens that investigators in different areas make

parallel and independent discoveries, with considerable duplication of

effort entailed. Developments in hierarchical clustering constitute a

prime example of such an occurrence. For instance, the most commonly

used methods of hierarchical clustering in psychological research are

those of Johnson (1967). However, as he pointed out, both of his

methods had already been independently discovered. Specifically, the

connectedness method (see p.3l for details) had been described by

Sneath (1957), and the diameter method by Sorenson (1948). Yet until

Johnson's (1967) paper appeared, hierarchical clustering was virtually

unheard of by psychologists doing research in areas other than test

theory.

As in the case of Johnson's methods, the algorithm we present here

represents an independent discovery of a method published earlier

(Mcquitty, 1967; Mcquitty and Clark, 1968). Mcquitty's work, although

directed toward psychometricians, has received little attention from

psychologists and none at all from sociologists, probably because most

of his illustrative applications have used artificial data having
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limited interest. Since we have found that this method of hierarchical

clustering can yield very meaningful results when applied to data with

which sociologists and social psychologists are already familiar, we

are presenting the present algorithm in a context that is quite different

from McQuitty·s.

We begin by describing the basic algorithm (acronym: CONCOR) as it

applies to partitioning the vertices of a graph into similarity classes

("blocks") • There are direct generalizations to handling the simul­

taneous blocking of multigraph data, i.e., data which report more than

one distinct kind of relation on the same population (pp. 16-17 below).

As will later become apparent from the Ba11k Hiring Group and other

applications, the ability to handle such multiple tie data is important

for many analyses of concrete social structures.

Expressed in sociometric language, the basis of the procedure

consists of systematically grouping together actors in a network who

occupy similar positions with respect to ties sent, ties received, or

both. The method is a rapidly convergent algorithm which (aside from

exceptional cases of largely mathematical interest) will produce a

bipartition of the set of actors (i.e., a partition into exactly two

equivalence classes). As described below (Section 2D) this algorithm

can be applied repeatedly at the discretion of the investigator to

produce a partition of the actors with any desired degree of fineness.

The algorithm is applied to a number of illustrative data sets.

These include: (1) social network data of sociometric or observed­

reported type; (2) participation data on women in a Southern city; and

(3) data on directorship interlocks among seventy large corporations
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and fourteen banks (originally studied by Levine [1972J from a multi­

dimensional scaling standpoint). All data sets studied involve

comparatively small populations « 100), though there are no basic

theoretical reasons for presence 0 f this lim:!. ta tion. Emphasis will be

placed on the interpretability of the obtained partitions in ,the ,light

of the original relational data, as well as on connections between the

present method and other methods of analysis applied by previous

investigators of the same data. (See also Part II, where specific

comparisons with multidimensional scaling are developed at length.)

'1. Structural Equivalence and B10ckmode1s

This section provides substantive background which will motivate

development of the algorithm and its applications. The, reader who

wishes immediate exposure to details may turn directly to Section 2.

However, the ideas discussed below, in particular the zerob10ck concept,

have direct bearing on later 'data applications and will there be quoted

freely.

Motivated by ideas of classical theorists such as Nadel (1957),

White and collaborators have undertaken the development of formal

theories which place great emphasis on the concept of "structural

equivalence" in the description of concrete social structures (White,

1963, 1969; Lorrain and White, 1971; Bernard, 1971; Breiger, 1974). The

structural equivalence concept is grounded in the network metaphors of

theorists such as Simme1 (1955):

; •• as the development of society progresses, each individual

establishes for himself contacts with persons who stand

outside [his] original group-affiliation, but who are
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'related' to him by virtue of an actual similarity of talents,

inclinations, activities, and so on, The association of

persons because of external coexistence is more and more

superseded by association in accordance with internal

relationships, ",practical considerations bind together

like individuals, who are otherwise affiliated with quite

alien and unrelated groups,

(Compare also the work of von Wiese, who was strongly influenced by

Simmel; eogo, von Wiese [1941: 29-30]),

Structural equivalence in White's work is seen as a unifying concept

cross-cutting theories of roles, kinship, sociometry, and organization,

where it repeatedly appears in many different guises and on various

different levels of analysis, Although the concept of structural

equivalence has been used in a number of distinct ways (Lorrain and

White, 1971; Fararo, 1973), all these cited developments have adhered

to a highly algebraic--and correspondingly rigid--concept of what

structural equivalence should formally mean, Specifically, in any

network (possibly involving multiple binary relations), the formal

definition of structural equivalence is as follows:

Definition 10 Let S be set and Ie{Ri }
m be a set of binarya
i~l

relations on S, ieeo:. a set of subsets of SxSo Then individuals a,

bE S are structurally equivalent with respect to the (multiple) network

defined by {Ri } i:l if and only if the following criterion is satisfied:

for any ciSs and any relation. R
i

,

(1) aR
i

C(:=)bR
i

C

(2) cR. a 6; JCR. b 0

]. ].
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This is a direct transcription of an equivalence ("indiscernibility")

concept familiar in model theory within mathematical logic (e.g.,

Robinson, 1965; Schoenfield, 1967). However, it is immediately clear

that if the above definition is applied directly to raw data, irregu­

larities in real social structures of any size will allow very few

instances of structural equivalence to be present. Hence, without some

crucial weakening or idealization, the equivalence concept as given is

essentially vacuous.

The route followed in the original work of White (cited above)

centered around performing homomorphisms on algebraic structures (e.g.,

semigroups) generated by raw data matrices, and then employing such

homclIlWrphisms to induce various equivalence patterns. Specifically, the

aim is to achieve structural equivalence in a reduced network, i.e., in

the image network obtained from raw data when this data is subjected to

a "functorial mapping" (essentially a generalized homomorphism). There

is no need to describe here the detailed mechanics of performing such a

homomorphism (see Lorrain and White, 1971; see also Fararo, 1973), but

the crucial point is that the image network under homomorphism will

typically be a much fatter network than the original one, L e., a

network with a much higher density of ties. For this reason alone it is

not surprising that structural equivalence among actors will eventually

emerge as a chain of successive homomorphic reductions is applied.

Taken in conjunction with a more broadly based rationale for the

homomorphism concept (developed at length in White, 1969), this

homomorphism strategy has been effective for giving insight into the

"skeletal" structure of some varieties of complex social networks
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(see examples developed at length in Lorrain, in press), However, the

approach has the crucial feature that it comes in a package: in order to

achieve structural equivalence at the level of individual actors, one

must make a long detour through complicated algebraic procedures

involving powerful and highly restrictive assumptions on the treatment

of compound ties (indirect social relationships),

In response to these limitations, White has subsequently developed

a second, and distinct, approach to modeling social network data and

finding structural equivalence patterns, This second approach is the

point of departure for the development of the present algorithm and we

will therefore discuss it in some detail, In later sections, the

relation between White's own analyses and the results of the present

algorithm will frequently be cited,

This second line of attack (White, 1973, 1974a, b; White and

Breiger, 1974) centers aroune! the concept of a "b10ckmodeL II This is a

'tery simple and natural combinateria1 idea; un1:1.ke the hemomorphism

analyses it inve1ves only minimal formal developments. For illustrative

purposes, consider first the (imaginary) data of Fig. la. For simplicity,

this example involves only one kind of reported tie; generalizations to

multiple types of ties will be deferred until later, in the context of

real data (e.g" Fig. 6).

The (i,j) th entry in the Fig. la matrix reports the presence ("1")

or absence ("0") of a network tie from individual! to individual i.

Both rows and columns are hence to be thought of as indexing the same

population of individuals in some given order which is the same for both

rows and columns. Otherwise, however, the row (respectively, column)
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Fig. 1. Imaginary data illustrating b1ockmode1s, lean fit, and zerob1ocks.

(a)

(b)

10100001100
2 000 101 1 0 0 0
3 0 00 1 0 1 0 0 0 1
4001001 0 0 0 1
5 011 0 0 0 1 101
6 0 0 0 1 0 0 0 001
7 1 1 0 0 1 0 0 110
801 100 1 100 1
90101001100

10 0 0 1 1 0 0 0 0 0 0

2 0 1 0 0 1 1 0 0 0 0
7 101 000 0 111
81.10101 1000
30000111000
4 000 1 0 110 0 0
6 0 0 0 0 1 0 1 0 0 0

10 0 0 0 1 1 0 0 0 0 0
1 1 1 1 00 0 0 0 0 0
51111001000
9 III 0 1 0 0 0 0 0

(c)

1

o

1

1

1

1

7a

1

o

o



ordering as presented is quite arbitrary, In this obvious comment lies

the source of blockmodel developments, By imposing the same permutation

on both rows and colullJl1s, one may be able to discover a new way of

presenting the data which is more interpretable (see Fig, ,lb, which

reports a permutation of the Fig, la matrix), The aim of this

rearrangement may be made more definite by specifying that what is being

sought isa permutation which reveals substantialcsubmatrices all of

whose entries are zero (White's term for such matrices is zeroblocks;

under the superimposed division, Fig, Ib contains three zeroblocks),

Finally, then, one may give a summary description of the data by means of a

blockmodel (Fig, lc), where a "0" in the model corresponds to a zeroblock

in the data matrix while a "1" in the model corresponds to a cblock in

the data matrix which contains at least some l's,

What is being developed here is a new kind of generalization cof the

concept of structural equivalence, where now one is treating individuals

in the same block as equivalent, [A minor terminological ambiguity

arises here, since the term "block" will be used to denote both a set

of actors and also a submatrix of a blocked matrix (see again Fig, Ib),

Context should always make the intent transparent,l Thsre is no longer

any question of "massaging" the original network data, as in the case of

the algebraic developments using homomorphisms, The~ data~

retained and instead it is the equivalence concept itself which is

weakened,

The formal idea may be made more precise by starting from a given

blockmodel (e,g" that in Fig, Ie) and making the following definition:

Definition 2, A blockmodelis a lean fit to a given data matrix M if
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and only if there exists a permutation of M, leading to a permuted matrix

* *M , together with a subdivision of M , such that:

(1) Zerob1ocks in the permuted matrix correspond to O's in the

blockmodel;

(2) Blocks containing~ l' s in the permuted matrix correspond

to l' s in the b10ckmode1 (compare again Figso lb and 1c) 0

There is a basic asymmetry here: zeroblocks are expected to contain

only 0' s, whereas l-blocks merely need to contain~ l' so This is the

sense in which the fit is said to be "lean" instead of "fato" Note that

if the fit were indeed fat, so that all 1-b10cks were completely filled

with l' s, then individuals in the same block would be structurally

equivalent in the original algebraic sense (po 5 above) 0

The particular weakening of Definition I which the lean fit concept

represents is a highly natural one in a wide variety of social network

applications. Presence of an active tie often requires a clear effort

on the part of one or both individuals concerned, whereas absence of a

tie does not in general require worko In a tightly knit social structure

it may be much easier to avoid maintaining a tie than to preserve an

active "maverick" tieo Moreover, any kind of data collection procedure

where reporting a tie depends on some kind of threshold cutoff criterion

(as in forced-choice sociometric procedures) may also act to create gaps

in 1-b1ocks o In contrast, such cutoff effects will not produce the

opposite kind of error, that of reporting existence of an active tie

where none in fact existso On these and similar grounds (discussed more

extensively in White, 1973, 1974b) it is unlikely that I-blocks will be

fat. From a purely formal standpoint, quite aside from substantive
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issues, one wauld expect the lean-fit criterion ta be relevant as a

criterion for clustering many varieties of sparse matrices,2

It is clear that blocks (in the lean-fit blockmodel sense just

defined) need~ be cliques in the standard graph-theoretic sense or

any of its many sociometric generalizations (Luce, 1950; Hubbell, 1965;

Alba, 1973, etc,) There is no implication that the members ofa block

cooperate or coordinate with one another, In fact, the individuals in a

block need not be connected at all to one another (see again the third

block in Fig, Ib), and in fact this absence of connection would not be at

all surprising if the members of a block were "hangers-on" to some

"leading 'crowd" and the relation being coded was something like

"deference" (see also the interpretation of the Bank Wiring data, p. 27

below). This point stresses very forcefully that the criterion for

lumping individuals into the same block is a consistency idea, not a

connectivity idea: blocks are defined on the criterion that their

members should relate consistently to ather blocks, in the specific

sense made precise by the lean-fit cancept. In the present context, the

emphasis on consistency implies in particular that in principle the

whole social structure must be simultaneously taken into account in order

to test any nontrivial blockmodel description for lean fit.

Practical development of blockmodel analyses now centers around the

following problems. (1) Given a blockmodel (as in Fig. lc), together

with raw data (as in Fig. la), there is the problem ef enumerating all

(if any) concrete blockings of the data (e.g., Fig. lb) which fit the

blockmodel in the lean-fit sense. (2) Given only raw data, there is the

problem of finding some lean-fit blockmodel for the data which involves
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a reasonably small and interpretable set of blocks, Next, since what one

is interested in is a summary description of a complex structure, one may

. also (3) weaken the strict lean-fit criterion of Definition 2 and proceed

otherwise along the lines of (2). Finally, given any particular block­

model and data arranged to fit this model, there is the problem (4) oJ

assessing how convincing is the obtained fit, pre~umably in a statistical

significance sense relative to some null hypothesis. Other things being

equal,it is clear that a lean-fit of a seven-block model on a population

of fifteen people is less likely to be impressive than is a fit of a

three-block model to the same population. Taking the extreme case, each

population of size n is a blockmodel of itself, wi.th n blocks, .and here

blockmodels clearly add nothing.

In this outline of the problems to be solved, the algorithm we will

describe below should be placed under (3). Specifically, the algorithm

is a way of directly starting from raw data and obtaining a partitioning

into clusters (actually, a hierarchical clustering). These obtained

clusters typically do not bring out strict zeroblock structure in the

data, as for example does the blocking in Fig. lb. Nevertheless,

extensive tests on data indicate that the results of the present

algorithm are usually close to the most informative lean-fit blockmodels

which have been found through trial-and-error methods (thus see below,

p.:.:26). From the standpoint of White's work, therefore, the present

algorithm may be interpreted as a search procedure for lean-fit

blockmodels as characterized in Definition 2. The relation between the

present algorithm and lean-fit models will be pursued at greater length

in later discussion of data applications.
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To avoid terminological c,mfusion, we will observe the following

conventions 0 When a block_del is spoken of as "fitting" given data,

the default interpretation is that the fit is close to a perfect lean

fit in the Definition 2 sense, but with some imperfections allowed

(impure zeroblocks)o We will always speak explicitly of the strict

lean fit criterion if the lean fit is perfecto Contrary to ~ priori

intuitions about the likelihood of imperfections in real social

structures, it is surprising how often true zeroblocks are actually

20 The Convergence-of-Iterated-Correlations (CONCOR) Algorithm

Consider an n xm real matrix MOO An example could be a sociomatrix

representing network ties; other examples will be encountered latero

Treating the columns (alternatively, the rows) as separate vectors

.!i.' i=l,2 p oo,m (respectively i=l,2,o00,n), form the mxm (respectively

nxn) matrix ~ whose (i,j)th entry is the standard product moment

correlation coefficient between v o and v 00 3 (M
l

wi.1l hencefqrth be
'"1- "'J

referred to as the first-correlation matrixo) Now apply the same

procedure to ~ and iterate, obtaining successively matrices ~, M
3

,

etco, all of which will be square matrices of the same size as ~o

Then the following mathemat:ica1 statements appear to hold

generally, aside from exceptional cases of "knife-edge" character:

(1) M =lim Mo always exists; and (2) M is a matrix which may be blockedcol 1. 00

in the following bipartite form:

(2-BLOCK)
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These two assertions will not.be investigated matematically here;4

for the present, it is sufficient that both (1) and (2) have been

empirically verified to hold on more than one hundred applications to

sets and subsets of network-related data ranging in size up to 70 x 70

(for .the initial matrix MO)o No exception to statement (2) has been

found ,in any application to datao In the simplest case where M is a

single binary matrix, representing a sociogram, the fact that the limit

matrixM can be blil'cked as indicated above may be restated to say that
~

the iteration procedure is an algorithm which splits into two parts the

set of actors in the networko More general situations will also be

encountered in the later applications, but .the .use of the algorithm is

always to produce a bipartition of a concrete populationo The algorithm

will be designated· CONCOR ("convergence-of-iterated-correlations") 0

Concerning the application of the CONCOR algorithm, the following

initial observations should be madeo

Ao Counterexamples to the limit (2-BLOCK) 0 There are a number of

obvious counterexamples to the statements (1) and (2), ioeo, cases

where M does not exist or cannot be blocked in a bipartite formo
~

However, if ~ is perturbed slightly away from such a degenerate case,

then convergence to the bipartite limit (2-BLOCK) will in general be

restoredo This indicates that the exceptions to the statements (1) and

5(2) above form a class of purely mathematical interesto However, one

particular case of degeneracy should be noted to arise if (in the case

of iterated column correlations) some column of the original matrix MO

has only l's or only O's (and dually for rows in the case of iterated

tow correlations)o Then the column vector in question has zero
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variance, and hence the product moment correlations involving this column

will be all undefined, In sociometric terms, this difficulty will occur

when some individual is either chosen by everyone or chosen by no one,

The former difficulty may be avoided by the technical expedient of

imposing a zero diagonal on M
O

(no one is considered to "choose"

himself), The second problem, that of an individual who is chosen by

no one, is reminiscent of the degeneracies arising in multidimensional

scaling when one or more points in the input distance matrix is very

far from all other points (Shepard, 1962b; Arabie and Boorman, 1973;

Table V), 6

B, Speed of convergence, Approach of M
i

to Moo is typically rapid,

Define a cutoff criterion to be a parameter c" 1 such that the algorithm

is terminated as soon as a matrix M is reached each of whose entries
n

has an absolute value) co The examples quoted in the applications

below were for the most part constructed with a cutoff value of c = 0,999,

In all examples of section 4 except the last one, ExampleE (the Levine

data, where the population of corporations was of size 70), the 0,999

cutoff was reached in eleven or fewer iterations, In the case of the

Levine corporate interlock data, a cutoff of c = 009 was reached after

12 iterations,

C, Blocking on rows versus columns of a t!lO'ciomatrixo If the

original matrix M
O

describes a network formed by forced-choice

sociometric procedure (Bjerstedt, 1956), then the nature of the data

collection procedure introduces an ~ priori asymmetry into the status of

rows and columns, Specifically, as Holland and Leinhardt have stressed

in a number of papers (e,g" 1969, 1970), forced-choice procedures have

14



the effect of constraining raw marginals and this constraint may have

the effect of masking existing network structure. Holland and Leinhardt

deal only with triad counts. but their concern also applies to the present

situation and suggests that in such specific cases one should give

preference to blockings based on column correlations rather than those

based on row correlations. All sociometric and observer-reported

applications of CONCOR presented in this paper (pp. 22 ff. below) are

based em column, rather than on row, correlations. In many cases, row

correlations have additionally been run. The results are typically

close, though not in general identical, to those obtained using column

correlations; the results of comparing row and column approaches will be

reported elsewhere.

It is also possible to mix row- and column-correlation approaches

in the same limiting process, as when successive iterations are

alternately based on row and column correlations (an alternation

procedure reminiscent of Mosteller row-column marginals equalization;

see also p. 40 below).

D. Repetitions of the algorithm on successive subpopulations.

The procedure just described may be separately repeated on each of the

two obtained blacks. Specifically, one may repeat the procedure on each

of the two subma,trices formed by taking the columns of ~ carresponding

to each of the two blocks delineated by the previous bipartition. A new

~ is then formed from each submatrix and the limit Moo is obtained. This

repetition will lead to a new bipartite split of each of the original

blocks in turn, leading to a finer overall partitiGn with four blGcks in

all. Notice that although ~ is a proximity matrix, the information
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cont3cined in ~ alone is insufficient for computing finer blockings; one

must return to M
0

in each case. Repeating the algorithm on each of these

finer blocks, we may obtain blockings to any desired degree of fineness,

and thus the CONCOR algorithm leads to an algorithm for hierarchical

clustering.

E. Multiple types of relation. Instead of data consisting of a

single network, assume next that one is given a network where a number

of distinct kinds of relations are reported. Specifically, assume that

one starts with k nxn data-matrices, each reporting the incidence of a

particular type of tie on an underlying population of size n (e.g.,

"Liking," "Helping," "Antagonism," etc.), The k matrices may be

compounded into a single new matrix with nk rows and n columns, in which

the individual data matrices are "stacked" one above the other in an

arbitrary order but preserving the same column ordering for each matrix,

(Alternatively, a 2nk xn array including each matrix and its transpose

may be formed.) An n xn first-correlation matrix M
l

may then be formed

as usual and the CONCOR algorithm again applied as before. Note that the

procedure as described implicitly gives equal weight to each component

type of tie, and in particular makes no attempt to weight ties

differentially according to the frequency of their incidence or other

measures of comparative importance. Various natural refinements may be

developed which respond to these difficulties by incorporating differential

tie weights (compare the use of weighted Hamming metrics by Kruskal and

Hart [1966J). However, only the simple unweighted procedure just

sketched will be used in the exploratory applications below."

The ease with which the CONCOR method may be extended to handle

16



multiple types of tie is a very important feature of the approach, and

makes it a natural clustering method for many types of social network

and other social structural data. In fact, there are few substantive

contexts where it Can be convincingly argued that only one kind of

social relation is present, rather than multiple networks simultaneously

existing in a population. Many characteristic aspects of concrete social

structures·in fact arise from the presence of multiple types of differ-

el'ltfatedtie (see White, 1963: Chapter 1 for examples drawn from

kinship and formal organizations). In many studies, empirical data

collection procedures eliminate all but one type of tie, or use ad hoc

aggregation procedures to reduce several distinct types of tie into a

single type prior to the main analysis. The existence of CONtOR as a

simple method which is able to handle a large number of types of tie as

easily as one type may encourage empirical investigaters to collect and

. 7
report data on multiple distinct kinds of soc~al networks.

3. Relation of the CONCOR algorithm to traditional aspects of clustering

and scaling.

Since the method of clustering introduced here is quite different

from most methods encountered in the behavioral and biological literature,

it is useful to relate CONCOR to the established framework of cluster

analysis. In describing CONCOR as a hierarchical clustering algorithm,

we should first emphasize that the phrase "hierarchical clustering" is

here being carried over from the tradition of data analysis in psychology.

There is no implication that CONCOR is a procedure specifically designed

to extract status orderings or other social hierarchies from social

network data, nor that such hierarchies will in fact be obtained in the
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applications below (contrast, for example approaches in Bernard [1973,

1974], where hierarchical structure in sociometric data is specifically

sought and analysed).

Ao 'Invariance properties 0 It is clear that the output from

CONC0R is not in general invariant under arbitrary m"motone

transformations of M
O

' considered as a matrix of real numbers, In the

standard clustering literature, this absence of invariance is

consistent with the metric approach of Ward (1963) rather than with the

nonmetric approach of Johnson (1967). However, in the context of the

present algorithm, the question of ordinal invariance does not have the

same significance as is in the case of other methods, since in dealing

with sociomatrices we are not viewing the input data M
O

as a distance or

similarity matrix (0£0 p o 12 above, and compare Needham [1965:118] and

Hartigan [1972:124-127])0 The fact that M
O

need not be a distance matrix

allows us to deal directly with binary matrices which cannot serve as

direct input to commonly employed methods of clustering based on

distance conceptso

However, from a formal standpoint, it is worth noting that the

CONCOR algorithm does give results invariant under any transformation

of MO~ [m, 0] which takes lai 0 to a la, ,+10"
1J J lJ

Bo The position of CONCOR in taxom:mies of data and data analysis.

In terms of Shepard's (1972:27-28) taxonomy for types of data and

methods of analysis, we are of course dealing with profile data as soon

as MI , the first-correlation matrix, :i.s computedo However, the fact

that CONC0Ris in many ways omnivorous with respect to M
O

(an n x m
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matrix) allows the algorithm to fall under several traditional headings

simultaneously,

For example, the fact that M
O

need not be a square matrix allows the

rews to correspend te entities completely different frem thecelumns.

Thus, in particular, we can deal with data which are apprepriate te

analysis by multidimensienal unfolding (see, fer example, the Levine

data in Sectien 4E below), The pessibility of clustering beth the rews

and the columns of a non-square M
O

makes this particular use of CONCOR

quite similar in emphasis to Hartigan's (1972) methed of "direct

clustering" (see alse MacRae, 1960),

In the useful terminelegy of Carrell and Chang (1970), the

applicatien of CONCOR to multiple types ef relation constitutes 2-way

scaling, since the result of forming M1 en the stacked raw matrices is

to study "subjects by subjects." We began with a 3-way data structure

(the k distinct relatiens censtituting the third level), but by stacking

we reduced the problem to a 2-way analysis, This reduction in the

cemplexity of the design is similar in intent to many applicatiens of

the more familiar 2-way procedures "'he:!"e one sums over conditions to

obtain a group matrix (or sums squares. if ene thinks that the raw

data are actually distances [Horan, 1969]), An example ef this standard

appreach is given by Shepard's (1972) reductien ef the Miller-Nicely

(1955) 3-way data en cenfusions -!>etween censenant phonemes. in order to

cenvert the data into a form where they may be entered as an input to

MOSCAL, which is inheremtly a 2-way precedureo

C. Relatien to alternative methods ef hierarchical clustering,

We will net attempt in this paper te review erclassify the many
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clustering algorithms presently available; the interested reader should

consult Lance and Williams (1967a,b) and Jardine and Sibson (1971) 0

However, we do wish to comment on the position of CONCOR with respect to

some of the more we1l-kno~." aspects of clustering procedureso

To begin with, the present algorithm is obviously "divisive," in

contrast to the more cmmmonly used "agglomerative" procedures

(terminology of Lance and Williams, 1967a) which begin forming clusters

by joining together single stimuli and then later merging clusters to

obtain a tree structure 0

Reflecting a commonly adopted standpoint, Jardine and Sibson (1971)

suggest a basis for classifying clustering procedures, which would

distinguish among procedures according to where they fallon a

continuum whose extremes are respectively the connectedness and diameter

methods of Johnson (1967) (see below, po 31), The question naturally

arises: where does CONCOR fall along such an axis?

We investigate this question in an Appendix, Specifically, the

analysis there given employs one of the Boqrman~Olivier tree metrics to

quantify the similarity between GONCOR and Johnson's RICLUS solutions

for two of the concrete data sets analyzed in Section 4 (the Bank

Wiring Group data a~d the Sampson monastery data). The evidence derived

from this analysis suggests no preferred position for CONCOR, and the

Jardine-Sibson classification hence appears essentially irrelevant to

the present approach 0

Turning to a different set of problems, a common feature of many

otherwise disparate clustering procedures is that they perform

inadequately or unsatisfactorily when confronted with certain practical
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problems arising frequently in data analysis, Two such situations arise

most frequently, These situations concern: (1) treatment of ties and

(2) presence of an excessive number of levels for interpretation in the

(output) hierarchical structure,

The presence of ties constitutes a real problem for clustering

procedures which are based on a sequential pattern of merging/splitting,

As Hubert (1973:48) observes, it is usually assumed that ties will not

occur, If they do occur, some arbitrary decision must be made, In

sharp contrast, ties in the raw data matrix MO do not in any way

constitute a distinctive case for the CON COR algorithm, which appears to

deal very effectively with binary matrices--a rather extreme case of

tie-bound data (see examples below in Section 4), The obvious reason

is the fact that CONCOR passes immediately to the first correlation

matrix ~, and ties in MO will not in general be inherited as ties

in M
l

,

The experienced user of hierarchical clustering methods is well

aware of the differences between the computer output from such methods

and the published figures that subsequently appear, The chief

discrepancy arises from the fact that most hierarchical methods yield

n levels (where n is the number of stimuli) in the tree structure--far

too many for either interpretability or ease of graphic presentation,

The user is hence confronted with the task of collapsing over certain

levels, The decision as to which levels are to be ignored is usually a

rather subjective one, as there are no well defined criteria available

for most hierarchical clustering methods, Of course, for situations in

which a fine level of partitioning is ultimately or locally required,
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CONCOR is no different from the other hierarchical methods with respect

to this particular problem: the user can continue applying CONCOR on a

given matrix to reach any desired level of fineness.

D. What the CONCOR algorithm maximizes. Unlike some other

hierarchical clustering schemes (e.g., Ward, 1963; Edwards and Cavalli-

Sforza, 1963, 1965, Hubert, 1973), the CONCOR algorithm is not cast in

the form of a solutio" of some maximum or minimum problem. However,

there is numerical evidence that the performance is close to that of an

algorithm designed to take the first-correlation matrix MI and to split

the underlying population into two groups So as to maximize mean

within-group correlations. For example, when HI for the Sampson data (Fig. 8) is

rearranged in accordance with the two-block CONCOR model, MI =(~ ~) ,
the mean correlation with submatrices A and D is .232 (excluding the

diagonal entries of M
l

, which are 1 by definition) and the mean correlation

in submatrices B and C is -,098. This contrast is marginally sharper

than for. White's (in press) two-block trial-and-error model on the same

data (which leads to the analogous correlations .185 ~~d -.087

respectively).

4. Applications to the Analysis of Social Networks

We discuss five applications to sociometric, observer-reported,

participation, and interlocking-directorate data.

A, Newcomb's Fraternity

Theodore Newcomb (1961; see also Nordlie, 1958) created a fraternity

composed of seventeen mutually unacquainted undergraduate transfer

students. In return for free room and board, each student supplied data

over a four-month period, including a full sociometric rank-ordering
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each week, listing the sixteen other students according to his "favorable-

ness of feeiing" toward each, The experiment was repeated with different

subjects in two successive years,

A small part of Newcomb's data (rankings for Year 2, Week 15) will

serve as a first illustration of a two-block model produced by the CONCOR

algorithm, Week 15 is the final week of the Year 2 experiment, and from

looking at the Year 2 data as a whole it is clear that the preference

rankings have reached what is roughly an equilibrium configuration by

about Week 4 or 5 and have remained there since (see also Part II, which

reanalyzes the full Year 2 data using INDSCAL,)

Specifically, form two binary matrices from the original rank-

ordered data for the given week, The first matrix Z (i'mest favorable

feeling") is taken to contain a "I" for each of the tep two cheices of

each student, with a's elsewhere; the second matrix a ("least favorable

feeling") is taken to contain a "I" for the bottom three choices of each

student, with a's elsewhere, In a simple way, these two matrices extract

two extremes of sentiment out of the raw rank-orderings, The particular

decision to take the top two and bottom three choices follews White

(1974b); from exploring numerous alternatives it can be asserted that the

blecking eutcome will be robust over alternative ways ef converting the

data to binary form, In particular, the same analysis has been rlJIl

taking top three and bottom three choices, with no essential difference

in results,

Z
Given the binary matrices Z and a , a 34 x 17 matrix M

O
= (a)

was now formed by stacking Z over a , The 17 x 17 first-correlation

matrix M
l

was now computed from the columns of M
O

' and the CONCOR
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algorithm was applied to obtain M, The bipartite blocking implied by
00

M led to the blocks (1,2,4,6,7,8,9,11,12,13,17) and (3,5,10,14,15,16)
00

(following Nordlie I s [1958J numbering of subjects),

This blocking is ideuticsl to that obtained by White through

trial-and-errpr and following (but not adhering strictly to) the lean-fit

criterion (White, 1974b),8

Figure 2 now illustrates the obtained blocking on the present top-

and bottom-choice matrices Z and a, It is clear that the pattern is

I 0
close to a lean fit to the two-block two-relation blockmodel H ~ (1 0 ),

o 1 9
T = (0 1)' though perfect lean fit is ruled Qut by a scattering of l's

in the low-density blocks, As a first way of developing a quantitative

approach to blockmodel fit, beneath each blocked matrix in Fig, 2 is a

table pf the densities in each of the four blocks (i,e., the number of

ties divided by the n\lmber of entries in the block an,d excluding cells

which fallon the main diagon"l), Note that there is a clear pimodality

in density as between the low-density blocks (densities = 0, .02, .03,

,O~) and the high-density blocks (densities = ,17, ,20, 141, ,50).

The blockmodel structure thus revealed is interpretable in a very

simple way. One of the blocks contains persoIS (1) none of whom send

top choices outside the block, and (2.) who receive virtually all the top

choices of the second block, and (3) who send virtually all their bottom

choices to the second-block individualso At the same time, the second

block not only receives virtually all bottom choices from the other

block, but also absorbs virtually all the bottom choices of its ~

members. This structure suggests a situation where there is a single,

dominant central clique and a second population of "hangers-on 0 "
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Fig. 2. TwQ~b1ock model for Newcomb fraternity data. Year 2, Week 15,

rank~order data converted to binary form by taking top two and

bottom three choices (see text)o
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B. The Bank Wiring Room.

The second application of the algorithm will concern an example of

Homans (1950). This example is drawn from a classic study (Roethlisberger

and Dickson, 1939) of a Western Electric production team transferred to

a special room which an observer shared for six months. Rathe.r than

asking the men themselves for a statement of their relationships (as in

the sociometric studies reviewed here), the original researchers

inferred the incidence of six types of tie among the fourteen men (see

Homans [1950:64-72] for a detailed description of each type of tie). The

ties have no time referent and are thought of as stable.

The specific types of tie reported are as follows (see also Fig. 6

for the incidence of all ties except the Trading one): "Liking;"

"Playing games with" (described as "Games" in Fig. 6; see Homans [1950:

68]); "Antagonism;" "Helping;" "Arguments about Windows with" (see

Homans [1950: 71]); and "Trading Jobs with." For the most part, these

relational descriptions should be self-explanatory. "Liking,"

"Antagonism," and "Arguments about Windows" were all co.ded as

symmetric ties. "Playing games with" was generically a positive

sentiment tie, while "Arguments" was a particular kind of negative

sentiment tie (Roethli.sberger and Dickson, 1939 :502-504). Each type of

tie may be represented by a 14 x 14 matrix reporting its incidence em

the fourteen-man population.

Our analysis excludes the highly specialized (and low-incidence)

type of tie, "Trading Jobs," as we wish to achieve comparability of our

10rest,tlts with White is seven-block model formed em the remaining five

relations. A 70 x 14 matrix Mo was formed by vertically "stacking"
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the remaining five 14 x 14 matrices, taking care to preserve the ordering

of columns. On the first iteration, a 14 x 14 column-correlation matrix

~ was then formed (Fig. 3). Applying CONCOR, M yielded the bipartition:
'"

(Wl,W2,W3,Sl,W4,WS,Il,I3), (W6,S2,W7,WB,W9,S4). (This notation follows

Homans' convention of numbering men within their job classification;

W for wiremen, S for soldermen, I for inspectors.)

In ,nder to obtain a finer blocking, the above process was

repeated for each of these blocks in turn. (E.g., the next step was. to

form a 70 x B matrix composed of the columns corresponding to Wl,WZ,W3,

Sl,W4,WS,Il, and 13 of M
O

and to apply CONCOR with this new submatrix

as MO') Eventually, nine blocks were found in this manner. In

accordance with one standard way of representing hierarchical clusterings,

a natural way of displaying the results of this repeated process is by a

binary tree (Fig. 4). Each nCilde in this tree represents a cluster

(block) containing all men positioned below it.

Figure 5 indicates the similarity between Homans' analysis (which

agrees in essentials with that of Roethlisberger and Dickson), the seven-

block model in White (1974b), and our own findings using the present

algorithm. Our two-block model essentially identifies Homans' two

cliques, though also mixing in individuals whom Homans considers as

outsiders. Our four-block model very nicely distinguishes the Homans

cliques (Blocks 1 and 4) from their marginal members and outsiders

(Blocks 2 and 3). This four-block model and White's seven-block model

are compatible, i.e., the latter is a partition which is a refinement. of

the former.

Now return to the five data-matrices and impose our four-blCilck
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First-correlation matrix M, fox!!',ad on the Bank Wi.ring data by
.l.

oorrelating oolumns of M
O

(desoribed in text),

Wl WZ W3 51 w4 W5 w6 52 W7 W8 W9 84 I1 13

Wl LO

W2 ,30 LO

W3 ,58 ,18 LO

81 ,34 ,05 ,35 LO

W4 ,46 ,17 ,38 ,56 1,0

W5 ,07 ,46 -,04 ,01 ,03 LO

W6 -,12 -,12 -,20 ,09 ,03 ,n LO

82 -,05 -,OS -,06 ,.21 ,22 -,,07' ,22 LO

W7 -,08 -,26 -,10 -,08 -,03 -,04 .33 ,19 1,0

W8 -,23-,23 -,22 ,07 ,09 .01 ,33 ,21 ,45 LO

W9 -,24 -,24 -015 ,05 -,09 ,07 ,38 ,~w ,50 ,58 1,0

84 -,19 -,19 -,24 -,08 -,07 ,11 ,38 -,55 ,30 ,36 ,43 1,0

11 ,41 ,27 ,17 ,,37 ,27 ,27 -,07 -,04 ,00 ,03 ,02 -,.03 LO

13 -,14 ,41 -,18 -,08 -007 ,27 ,04 ,36 ,00 -,08 -,09 -·.15 -.11 LO
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0\
0' W~, W3

S~, W4 14

W2,W5 13

W6,S2

W7 W8,W9

54

Fig. 4. Hierarchical clustering representation of the repeated

application of the CONCOR algoritlun on the Bank Wiring data.



Fig. 5. Comparisen of the CONCOR results reported in Fig. 4 with the

trial-and-error blockmodel analysis of White (1974b) and the

discussion in Homans (1950),

Homans~
(CONCOR algorithm) vlhite's

Individual's assig~- 2-block 4-b1cck 9-block 7-block model
identification menl model model model (White, 1974b)

WI A 1 1 1 2

W3 A 1 1 1 1

W4 A 1 1 2 1

81 A 1 1 2 1

11 A I 1 3 2

W2 * 1 2 4 3

W7 B 2 4 7 5

W8 B 2 4 8 4

W9 B 2 4 8 4

84 B 2 4 9 5

W6 '/rdt 2: 3 6 6

W5 *** 1 2: 4 3

82 *** 2: 3 6 6

13 ;{r;.',** 1 2 5 7

Key: Blocks are named by letter (Homans) or number (others).

+ Based on Roeth1isberger and Dickson (1939), pp. 508-510.
* Man W2 was oriented to but outside of Clique A and "had little to do

with it; he entered little into conversation" (Hemans. 1950: 70).
** Man W6 was oriented to Clique B but "in many ways was an outsider

even in [this] greup" (HelIllllns, 1950: 71).
*** In Romans' judgment, men W5. 82, and 13 were not members of either

clique.
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model (Fig. 6). Below each data-matrix is placed a 4 x 4 matrix

indicating the density of ties in the corresponding submatrices of data.

As in the Newcomb case, this is a first approach to quantitative treatment

of fatness of fit. Note the high frequency of zeroblocks (summing across

relations, there are 5 x 16 = 80 blocks and almost half of these blocks

[37] are zeroblocks). This occurrence supports the general observation

at the end of Section 1, that even without explicitly trying to isolate

zeroblocks CONCOR often has this effect when used on networks of

basically low tie density.

The blocked "Liking" and "Games" matrices clearly delineate two

cliques within which there is positive sentiment. (As mentioned above,

Blocks 1 and 4 are identical to the central membership of Romans'

cliques A and B, respectively.) The "Liking" matrix would yield a'

th'l1ee-block blockmodel ( ~ ~ ~) according to the strict lean-fit
001

criterion were it not for the presence of a single "discrepant" tie (Sl

and W7 choose each other). As White (1974b) states, "this one tie, which

abrogates the possibility of [an algebraic] role model based on Romans'

cliques, is no accident; it is a significant part of the social

structure, a tie between two leaders." (Compare the discussion of

"bridges" in Granovetter [1973].)

The "Games" relation (see again Fig. 6) further suggests a status

ordering as between central and marginal members of each clique: only

central members of a clique play games toge'ther, while the marginal

members of a clique ("hangers-on") play games only with the central

members, !:2E. with each other. The appropriate submatrix blockmodel

(taking either the first two or the last two blocks) is then of the form
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Fig. 6. Five Bank Wiring Group relations blocked into four blocks under

CONCOR algorithm. Tie densities for blocks reported beneath

each matrix.

LIKING

Wl 111 _JL.._ ---- Wl
W3 111 W3
Sl 11_1_ ---i-- ~--- SI--- i-- 1
W4 111 ---i------ W4
11 1 I1
W2 ----- W2------ -~--

W5 -- W5
13

_.- --- 13
W6 ----- W6--S2 52
W7 1 --- --"11_ W7
W8 --- --L11 \-18
W9 L11 W9
S4 --- -- II 54--

GAMES

III 11 ----III lJ-:- --
II_I, 11_ ----III 11_

--~-111 1
1111 --- -- ----1111 L___-- --
----- --- -- Lll_

----- _I_ I _111
1- 11

----- --- I_ I 1
II-----L._~ -- -

WI
W3
SI
W4
II
W2
W5
13
W6
52
W7
W8
W9
54

ANTAGONISM

--------------
------".-------
------~-------
----- ",1_------I
____ .I.

--- ~".
111

11 _".1 LlLU-
I .L111

-----i-~1
_.L___

1
111 .1._----

----- Lll
111-----------

1
1----

LIKING GAi'lES ANTAGONISM

0,70 0 0 0.05 0,90 0,60 0 0 0 0.27 0 0

0 0 0 0 0.60 0 0 0.08 0.27 0.33 0.50 0.83

0 0 0 0 0 0 0 0.37 0 0.50 0 0.12

0.05 0 0 0.83 0 0.08 0.37 l.00 0 0.83 0.12 0
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Fig, 6, (Cont,)

HELPING

WI 11 1 WI- - - -W3 W3---- -Sl Sl
W4 n-- - w4
II II
W2 W2-1 W5W5 - -- - 1313
W6 1 1 W6- -- -S2 S2
W7 1 W7---- - r1W8 W8---- - - iW9 W9
s4 ---I - -I- . S4

WINDOWS

----- --- -----
----- -,-- --:---
----- 1, 111

1'- 1_.- -~- -
- -- -

---.,.- --- -~---__11_ --- L_----
__11_ _1_ _fl.L.L.L

1 ---L_ ~111-----·1 L_1'-_11
__11_

1--- 1-,.(=1 L_

HELPING WINDOWS

0,20 0,07 0,10 0,10 0 0,13 0,20 0.25

0,27 0 0 0 0.13 0 0.17 0

0,10 0 0,50 0,37 0,20 0,17 0 0.50

0.05 0 0,12 ()'42 0,25 0 0,50 0.83
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E = (i ~) , where the "0" indicates absence of ties among the hangers-on

population, (See also White and Breiger, 1974 for more extensive

discussion in the context of other two-block models,) There is only one

case of game-playing between cliques, and this involves a marginal

member of one of the cliques,

The "Antagonism" relation is particularly revealing, and provides

a substantial amount of additional information supporting a status line

of interpretation, No central member of either clique is antagonistic

toward either his fellow clique members ~ toward his opposite numbers

(Le" the four comer blocks are zeroblocks). The complete absence of

antagonism between the two central cliques is very much in contrast to

the naive predictions of classical balance theory (Abelson and Rosenberg,

1958) or any of a number of substantially modified and weakened versions

of this theory (e,g" Flament, 1963; Newcomb, 1968). The central clique

members are antagonistic only toward marginal members.

Note also that there is more antagonism between the two hangers-on

groups (3 symmetric ties) than wi. thin either of the hangers-on groups

(1 symmetric tie), However, the hangers-on groups are both quite small

and this last point is correspondingly weak,

Still considering the Antagonism matrix, one next observes that there

is a strong asymmetry as between the two central cliques: the members of

clique A direct antagonism only toward their own hangers-on, ignoring the

hangers~on of clique B, whereas the members of clique B likewise direct

antagonism toward the hangers-on of clique A and almost completely

ignore their own hangers-on (there is only one exception, in the

antagonism between W6 and W7; on this particular relation, see Homans
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[1950:77]). MGreover, there is a substantially higher incidence of

antagonism between the central members of clique B and the hangers-on

of clique A than between these hangers-on and the central members of

clique A (contrast the [I, 2] and [4, 2] cells of the blocked antagonism

matrix in Fig. 6).

Summarizing this evidence, it is possible to interpret the observed

asymmetries between the two cliques as evidence of the "dominant"

position of clique A, This dominance is clear from the observer reports,

and Homans in particular comments as follows (1950: 71): "Each clique had

its own games and activities, noticeably different from those of the

other group, and clique A felt that its activities were superior to those

of clique B." (See also Roethlisberger and Dickson, 1939 :510). In

developing this differential status interpretation, it is unfortunate

that the reported antagonism relation is symmetric, since it is

consequently impossible to differentiate negative sentiment ties as

.between sender and receiver,

In this connection, the "Helping on the Job" relation assumes a

potentially important place, since it is the only relation in the data

which is not fully symmetric. 11 Again, some status effects are

indicated, The hanger·s-on to clique A did not help each other but

helped the central members of cli.que A to a substantial extent which was

not reciprocated. A similar asymmetry appears with respect to the

marginal members of clique B. Observe that there are also instances

where central members of one clique help central members of the opposite

clique. However, these instances are too few and the density of the

Helping matrix is too low to draw inferences about the relative status
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position of the two central cliqueso

Finally, there is the Windows matrix, which describes the incidence

of controversies about windows in the work room--specifically, whether

they should remain open or shut. It is apparent that this was an

activity which tended to center primarily around clique B. Homans (1950:

71) also describes several other activities which tend to be clique-

specific. The present case admits a very simple interpretation if it is

realized that the work room had assigned places for each of the men, and

most of the members of clique B were located closer to the windows (see

Fig. 2 in Homans [1950:57]).

The detailed analysis just concluded makes clear that the central

importance of blockmodels is the way in which these models may be used

to clarify relational structure from raw network data. This relational

structure goes very much beyond mere partitioning or hierarchical

clustering of the underlying population, such as is produced by CONCOR

or any other hierarchical clustering procedure. HGwever, it is Gbviously

of interest to assess the performance of the CONCOR algorlthm In produclng

blGckings which may subsequently be used as a basis for detailed

relational analysis. To this end, we now give a detailed comparative

discussion of the relative performance of CONCOR and JohnsGn's well-known

(1967) HICLUS prGcedures Gn the Bank Wlring data.

The HICLUS output, Fig. 7 shows the results of analyzing the first-

correlation matrix Ml in Fig. 3 by both Johnson's connectedness and

12diameter methods. Recall that the diameter methGd substitutes the

maximum distance into the original (proximity) matrix when a new cluster

(i,j) is formed, i.e.,

30



Fig. 7. Hierarchical clustering of first-correlation matrix ~, deriV'ed
from Bank Wiring room group data, using HICLUS methods. of
Johnson (1967), The c1usterings are reported in standard
HICLUS format. There is no parallel in CONCOR to the cluster
values 0(. produced by the HICLUS procedures.

(a)

Similarity
value

0.583
0.581
0.564
0.496
0.458
0.426
0.408
0.384
0.361
0.300
0.221

Connectedness method

WWWWSWWSWISWWI
67894131412253

xxx ..
XXX XXX 0 e

XXX XXX xxx
XXXXX XXX XXX
XXXXX XXXXXXX xxx
XXXXXXX XXXXXXX XXX
XXXXXXX xxxxxxxxx XXXXX

XXXXXXXXX XXXXXXXXX XXXXX
XXXXXXXXX xxxxxxxxx xxxxxxx
xxxxxxxxx XXXXXXXXXXXXXXX

(b)

Similarity
value

0.583
0.581
0.564
0.458
0.453
0.384
0.361
0.340
0.300
0.272

-0.036
-0.152
-0.258

Diameter method

WWSWWWIWWWWSSI
1 3 1 4 251 789 642 3

xxx 0 0 00

XXX 0 0 XXX
XXX XXX XXX
xxx xxx XXX XXX
XXX XXX XXX XXXXX
XXX XXX xxx XXXXX XXX
XXX XXX XXX XXXXX XXX XXX
XXXXXXX XXX xxxxx XXX XXX
XXXXXXX XXX XXXXXXXXX XXX
XXXXXXX XXXXX XXXXXXXXX XXX
xxxxxxxxxxxxx XXXXXXXXX XXX
xxxxxxxxxxxxx xxxxxxxxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXX
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d[i.j],k) = max[d(i,k),d(j,k)],

whereas the connectedness method substitutes the mInimum distance,

d[i,H,k) = mfn[d(i,k),d(j,k)],

At the coarsest (two clus ter) level, the Johnsen connectedness method

produces the two clusters (1016,1017,1018,1019,84), (Wl,W3.81,W4.n.82.W2.W5.I3).

The next splitting of the first cluster leads to (1016,1017), (1018.1019.84). and

one obtains similarly (W1;W3,81,W4,11), (82,W2,W5.13) for the 'second cluster

(order of individuals fellows output in Fig, 7 (a)). The two-cluster

split is similar to the two-block CONCOR output. except that 82 in the

CONCOR output is placed with (W6,W7,W8.W9.84) rather than with the other

cluster (1011.1013.81••••••13). This difference does not clash in any

major way with the substantive judgment of Romans that, man 82 was not a

member of either clique. At \the four-block level. a more significant

difference is that the Johnson method places W6 with 1017, hence cutting

across the boundary of the central clique B membership (1017 is assigned

by Romans to clique B, whereas 1016 is not).

8imilar1y the JGhnson diameter method leads to the two-cluster

split (W1,W3.8l,w4,W2,W5,11), (1017,1018,1019,1016,84,82,13), which may then be

broken into four clusters (1011,1013,81,1014), (1012,1015,11), (W7,W8,W9,W6,84),

(82,13) 0 The two-cluster diameter solution i.s again similar to the

two-block CONCOR results, although the inspector 13 is now placed with

(W7,W8,W9,W6,S4,82), The four cluster solution devi.ates in an

important w'2y from the CONCOR results by placing man II in a different

cluster from (1011.1013,81.1014), hence breaking up the central clique A

whereas CONCOR does not, In this respect, the performance of the

diameter method is clearly inferior to CONCOR, As in the case of the
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connectedness method, the diameter method also places W6 with

(W7,W8.W9.S4) at the four cluster level, hence again imperfectly

discriminating clique B at this leveL

In summary, although the performance of the three algorithms is

quite similar, CONCOR is the only one of the algorithms to recover the

Roethlisberger-Dickson-Homans cliques in a perfect way, The Appendix

develops a more detailed quantitative comparison among the three methods,

using the tree metrics approach of Boorman and Olivier (1973),

C, Sampson's Monastery

S, F, Sampson (1969) has provided a meticulous account of social

relations in an isolated contemporary American monastery, Turbulence

was emerging inside American Catholicism in the late 1960's, and there

was a major conflict in this particular monastery toward the end of

Sampson's twelve-month study, The upshot of this conflict was a mass

departure of the members, with the result that Sampson's data is of

special interest for what light it may shed on the structure of a social

group about to disintegrate for internal reasons,

The wide variety of observational, interview, and experimental

information which Sampson developed on the monastery's social structure

included the formulation of sociometric questions on four specific

classes of relation: Affect, Esteem, Influence, and Sanctioning,

Respondents were to give their fi1l:8t, second. and third choices, first

on the positive side (e,g" "List in order those three brothers whom you

most esteemed"), then on the negative side (e, g" "List in order those

three brothers whom you esteemed least"), Responses for eighteen

members (not including senior monks) are presented for five time periods;
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it should, however, be stressed that the data were obtained after the

breakup had occurred, and hence are subject to the kinds of errors which

make recall data often unreliable, The pr's,ssnt analysis is confined to

Sampson's fourth period, just before the major conflict aIld after a new

cohort had initially settled,ino

Sampson presents his Time Four data in four tables, one for each

class of relations, in which negative choices are represented by negative

integers according to the choice level, (Thus, for example, a choice of

"like most strongly" appears as +3 in the Affect table, while a choice

of "most strongly dislike" appears as -3 in the same table,)

White (1974b) formulates blockmodels on choices which are made

binary by using the top two and bottom two choices for each man, This

leads to eight binary matrices in all, which are then blacked, We have

instead applied the CONCOR algorithm directly to Sampson's reported

data involving weighted choices, A 72 x 18 matrix M
O

was formed by

vertically "stacking" the Affect, Esteem, Influence, and Sanctioning

matrices, taking care as usual to preserve the ordering of columns,

Starting with the first-correlation matrix M
l

shown in Fig, 8, CONCOR

then produced a two-black partitioning (sseF'JLg, 9) in which one block

includes all individuals whem Sampson identifies as the "Loyal

Opposition" faction (persons numbered 4, 6, 11, 5, and 9 in Fig, 8) and,

in addition, three members whom Sampson terms "interstitial"--Le"

brothers nat clearly belonging to any group (persons numbered 8, la,

and 13),

The CONCOR procedure was then repeated on the submatrix formed by

taking columns of M
O

correspanding to the remaining block (Leo, columns
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Fig. 8. First-correlation matrix ~. formed On the Sampson monastery, data (details in text).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Lo
.23 1.0
.02 -.07 1.0

-.33 -.34 -.06 1.0
-.29 -.48 -.10 .15 1.0
-.08 -.17 -.23 .41 -.07 1.0

.12 .24 -.14 -.42 -.01 .13 1.0
-.04 -.28 -.37 .25 .24 ;35 -.09 1.0
-.19 -.21 -.15 .44 .26 .15 -.40 .02 1.0
-.15 -.34 -.19 .05 .00 .18 -.02 .21 .00 1.0
-.35 -.48 .06 .45 .18 . .18 -.17 -.01 .10 .43 1.0

w .13 .19 -.26 -.25 -.19 .04 .00 .04 -.17 -.17 -.25 1.0·w -.06 -.33 .15 .02 .09 -.23 -.09 -.05 .04 .00 .04 -.24 1.0III
.10 .31 -.17 -.17 -.06 -.13 -.03 .02 -.04 -.33 -.39 .19 -.21 1.0
.26 .38 -.16 -.41 -.17 .02 .23 -.12 -.14 .00 -.33 .17 -.26 -.01 1.0

-.12 .31 -.18 -.24 -.09 -.28 -.02 -.16 -.26 .08 -.18 .17 .10 -.03 .20 1.0
.11 -.14 .31 -.43 -.04 -.24 .12 -.26 -.17 -.15 -.22 .05 .19 .11 -.18 -.10 1:0
.07 -.15 .25 -.37 -.05 -.56 .04 -.27 -.07 .12 -.09 -.11 .20 .08 -.06 -.01 .56 1.0



13

5,9,13

5,9

10, II

17,18

4,6,8

3, 17,
18

3

12, 14,
16

I, 2,7,
15

I, 7 2,15 4,6 8

Figo 90 Hierarchical clustering representation of repeated

application of the CONCOR algorithm on Sampson's data,
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1,2,3,7,12,14,15,16,17,18), Convergence of this 72 x 10 matrix resulted

in the further partitioning (1,2,7,12,14,15,16) (3,17,18), The first

group just enumerated corresponds identically with the "Young Turk"

faction which Sampson identifies through a combination of many analytical

techniques, The second group (3,17,18) coincides with the "Outcast"

group which Sampson also identified, Together with the individual

numbered 2, one of the leaders of the Young Turk faction, the Outcast

group was the group whose expulsion from the monastery triggered a mass

resignation which soon followed,

On the basis of an intuitive search for lean fit blockmodels, White

(1974b, Table 10) has formulated a five-block model of the monastery's

social structure, as well as a coarser three-block version formed from

these five blocks, White' s three-block model may be formally obtained

by applying CONCOR to the stacked version of the eight raw Sampson

matrices distinguishing "most" from "least," rather than the collapsed

version of four stacked matrices on which the present analysis is based.

White's three-block version and ours (just described) are identical with

the exception of the individual numbered 13: White places him among the

"(i)utcasts" and we place him with the "Loyal Opposition," Significantly,

Sampson lab¢ls the individual in question as one of the three

"interstitial" members of the monastery, implying that his structural

position was ambiguous (see also p, 45 below) ,

The discussion thus far suggests excellent comparability of our

results both with Sampson's own analysis and with White's three-block

model, In order to explore the results further, we now return, as in the

Bank Wiring analysis, to the original relational data,
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In Fig, 10 we present a summary description of the two kinds of

affect relation with which Sampsen dealso The matrices on the left of

Fig, 10 consist of the Boolsanunion of Sampson's (positive; Affect,

Esteem, Influence, and Sanctioning relations, The matrices on the right

of Fig, 10 consist of the Boolean unio,n of Sampson's Dislike, Disesteem,

Negative Influence, and Negativ," Sanction relations, In obtaining the

Boolean matrices from which these unions are formed, the top two and

bottom two choices (respectively) are utilized,

The first row of matrices in Fi.g, 10 displays the Positive and

Negative Affect r'elations in their unpermuted row-column order, The

second row of Fig, 10 displays these same. matrices permuted into a form

compatible with the three-block model obtained above: using Sampson's

labels, these blocks correspond to the Loyal Opposition + Waverers

(persons numbered 4,6,8,10,11,5,9,13), the Young Turks (1,2,7,15,12,

14,16), and the Outcasts (3,17,18), The third )tow of Figo 10 indicates

densities of entries within the blocks of these last two matriceso

Examination of the third cl1l1umn of the blocked matrices in the

second row of Fig, lCl strongly suggests wily the Outcasts were so named:

they receive a disproportionate share of the negative ties from

individuals in other blocks, and virtually no positive ties,

Seen as a whole, the pattern ev1:nced by Figo 10 may be interpreted

as an appr<r>ximation to the soci(jllletric "clustering" phenomenon discussed

by Davis (1968), Leo, presence of "two or more subsets such that each

positive line joins two points "r the same subset and each negative line

joins points from different subsets," Specifically, examination of the

tie densities in the blocked Sllllllpson data shows that most of the
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Figure 10. Summary description of the Sampson data, showing unpermuted
and blocked forms, and also block densities.

(a)

Unpermuted
data

(b)

Blocked data
under a

permutation
derived from
. ·;.Fig. 8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

4
6
8

10
11

5
9

13
1
2
7

15
12
1l,
16

3
17
18

Positive Affect

11 1 1 1I ----1---1- ----
1------ --- 1----1

---1----·-11- ----
---I ------ 1-------
---1----r"1-------
-1- ---- - ----I--
I -1-1----1---- -­
lr1- -1-- r-----

-1'--- --- 1-----
---11--YY--- -----
11- -- ---------

--1-1---1------1
11-- - --- ---1--
1---------1-1 ---

-1----Y---- - 1---
- Y--- ------- --I
-Yl-------------1

111 . .--- --~-----~~--1 1 1--- _. - -------~--11 1
1 -- --I ------ --
------ ~------~--1 1 11

1- -I -1--------1---
1-1- --- -Y---r-"--
- -11-- 1- --~-1

1 1 11-- -----1;- -- ---__1 ~ 1 _

1 1--------,...---- --1 11--------,.:-- -~--1
--------11-1--- --
-------- - ---r--111-_.- - ._-
_______ _ I;-_l

_______ _ ~_1

. " .. ' 1 1
--_.--~-- - ---~- -

Negati~e Affect

11 1 11 1
- 11-- 1- -1----
-I l-r ----- -----
11- - --------1----

------._---- --II
--1---1---------1
--11-1 1-------- -
-11 - - ----1--111
- 1--------- -- 11

-11---1---------11
- --- ------1-- 1
-1---1------- --11
- -1- -1--1-1---
--11--- -- -1-----
--11------1- ---II
-- 1-1-1-- -----
---1-1-1-YI-------

------- 11---- II
-----~- - ---

11------111-1----- 1---- 11

11

1

III
11r--­
ll1Ir-

(Loyal
Opposi tion)

(Young
Turks)

(Outcasts)

(c) 0.375 0.0893 0.0417
0.0357 0.429 0.0476
0.0417 0.0952 0.833

0.0357 0.161 0.625
0.286 0.0714 0.429
0.417 0.0476 0
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positive affect ties are concentrated within blocks and most of the

negative affect ties occur between blocks. It should be emphasized that

this c1usterabi1ity pattern is specific to the present data and does not

necessarily generalize: just as blocks need not be cliques (see Section

1 above), so also blocks may--but need not--form clusters or approximate

clusters in the above sense of Davis. As an illustration, turn back to

the "Games" matrix in the Bank Wiring data (Fig. 6 above). Here the

presence of numerous ties between the obtained blocks violates the Davis

condition if blocks are to be understood as clusters in his sense. At

the same tims, however, the between-block positive ties are clearly

interpretable in this case: they indicate the bonds between "hangers-on"

and central clique membership.

Note that even though the Fig. 10 blocked matrices contain only one

zeroblock, there is a clearly defined set of blocks which are close to

being zerob1ocks because of very low tie density, This judgment is

borne out by a clear bimodality in the frequency histogram of block

densities (Fig. 11).

Examining the pattern of block densities in more detail, it appears

that the highest within-block density on positive sentiment is achieved

within the Outcasts (.833, as opposed to .375 and .429 for Loyal

Opposition and Young Turks respectively). Of the three groups, the

small Outcast group hence approaches most nearly to the definition of a

clique in classical sociometry. Note also that with respect to positive

sentiment the Young Turks fall into two clear groups, (1,2,7,15) and

(12,14,16), with the (12,14,16) subset distinguished by the absence of

direct positive sentiment ties among its members (zeroblock on main
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Fig, 11, Frequency histogram of within-block densities in the

three-block Sampson model of Fig, 10 (see Fig, IDe).
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diagonal in Fig. lOeb) positive affect matrixo This further division

is reproduced by CONCOR (see again Figo 9)0 The blocked negative

sentiment matrix in Figo 11(b) again reveals the Outcasts as a cohesive

group, receiving a high incidence of negative sentiment from the other

two groups (the [l,3J and [2,3J cells in the blocked negative matrix

have densities .625 and 0429 respectively, which are the two highest

density cells in this matrixo Note that there is a virtual absence of

negative sentiment di.rected from the Outcasts to the Young Turks (0nly

one entry), which is in contJEast to the quite high incidence 0f

negative sentiment directed from Outcasts to the Loyal Oppositiono This

observation is consistent with the prevailing factional p01itics, since

the Outcasts were among those later expelled whereas the L0yal Opposition

formed the core of those remaining through all the subsequent

resignations. Finally, note that there is a considerably higher

incidence of negative sentiment ties directed by the Young Turks to the

Loyal Opposition than~ versa([2,l] cell has density .286, while

[1,2] cell has density only .161).

Finally, Fig. 12 shows the output of the Johnson connectedness and

diameter methods on the ~ Sampson matrix of Fig. 8. Both meth0ds

basically recover the three-way split into Loyal Opposition, Y0ung Turks,

and Outcasts, but both differ from CONCOR in Figo 9in placing the

interstitial man 13 among the Outcasts. The diameter method also

reveals the partition 0f the Y0ung Turks earlier indicated, which splits

them into the two subsets (1,7,2,15) and (12,14,16); the c0nnectedness

method d0es not repr0duce this precise split.

Additi0nal numerical comparison 0f the three methods on the present
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Fig 0 12, Application of Johnson (1967) HICLUS methods to first­
correlation matrix M1 for Sampson data,

(a)

Similarity
value

0,556
0,452
0,440
00432
0,411
0,383
00352
00313
00308
00307
0,264
0,236
00204
00193
00120
00117

Similarity
value

00556
00452
0,383
0,352
00264
0,247
0,234
00185
0,178
0,154
0,125
00103

-0,031
-0,072
-0,118
-0,328
-0,562

Connectedness method

o 0 0 1 0 0 110 0 1 0 1 1 1 0 1 1
5 8 6 0 9 4 1 2 7 1 4 2 5 6 337 8

xxx
XXX XXX

xxxxx XXX
xxxxxxx XXX

XXXXXXXXX XXX
XXXXXXXXX . 0 XXX XXX

XXXXXXXXXXX XXX XXX
XXXXXXXXXXX XXXXX XXX
XXXXXXXXXXX xxxxxxx XXX
xxxxxxxxxxx XXXXXXX XXXXX

XXXXXXXXxxxxx XXXXXXXXX XXXXX
xxxxxxxxxxxxx XXXXXXXXXXX XXXXX
XXXXXXXXXXXXX XXXXXXXXXXX xxxxxxx
xxxxxxxxxxxxx XXXXXXXXXXXXX xxxxxxx

~~xx~xx~~~~~~~~~~

(b) Diameter method

o 0 1 0 0 0 100 0 1 1 1 1 1 0 1 1
6 805 9 4 1 1 7 252 4 6 3 3 7 8

xxx
XXX 0 0 XXX
xxx XXX xxx

XXX XXX XXX XXX
XXX XXX XXX XXX XXX
XXX XXX xxx XXX xxxxx
XXX XXX XXX XXXXX xxxxx
XXX XXX XXX xxxxx XXX xxxxx
xxxxx XXX XXX XXXXX XXX xxxxx
XXXXX XXX XXX xxxxx XXX XXXXXXX
xxxxx XXX XXX XXXXXXX XXX XXXXXXX
XXXXX XXXXXXX XXXXXXX XXX XXXXXXX
xxxxx XXXXXXX xxxxxxx xxxxx XXXXXXX
XXXXXXXXXXXXX XXXXXXX XXXXX xxxxxxx
XXXXXXXXXXXXX XXXXXXXXXXXXX xxxxxxx
xxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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data is contained in the Appendix.

D. Social Participation in "Old City"

As part of their classic Deep South study, Davis, Gardner and

Gardner (1941:146-151) present research on the social participation of

eighteen women at fourteen social events (such as a card party, a church

supper, and so on) held during the course of a year. Their goal was to

determine cliques present in this small population. This example was

subsequently used by Romans (1950:82-86) in his section on the

"Definition of the Group." Breiger (1974) has employed an ad hoc clique

detection procedure to this data which emphasizes the "duality" of

persons and groups.

The unpermuted data matrix, whose (i,j) th entry signifies the

presence ("1") or absence ("0") of woman f at event ,;t, is shown in

Fig. l3a. Columns are arranged chronologically and rows are ordered

arbitrarily.

The present algorithm was applied to the (single) original matrix.

Blockings into two blocks were obtained separately for columns (events)

and for rows (women). Then "hese distinct parti.it:ionings were imposed

(respectively) onto columns and rows of the original data (see Fig. 13b).

In the reordered matrix, one may directly observe a strong association

of the first cluster of women with the second cluster of events. The

presence of this association is corroborated by a Yule's Q of -.941 on

the 2 x 2 table formed by taking within-block sums of the Fig. lIb

matrix.

The two-block partition of women thus obtained is (Eleanor, Ruth,

Charlotte, Brenda, Laura, Evelyn, Theresa, Frances) and (Dorothy,
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Fig. 13. Participation data on women in a Southern city, illustrating
the use of the CONCOR algorithm to block membership data.
In Fig. 13 (a),women (rows) are ordered arbitrarily and events
(columns) chronologically (adapted from Homans [1950:83]).
Fig. 13 (b) displays this same matrix after applying CONCOR
separately to rows and columns.

(a)

11111
12345678901234

(b)

U 111
15691423478023

.1.
2.
3.
4.
5.
6.
7,
8.
9.

10.
11.
12,
13.
14.
15.
16.
17.
18,

Eleanor
Brenda
Dorothy
Verne
Flora
Olivia
Laura
Evelyn
Pearl
Ruth
Sylvia
Katherine
Myrna
Theresa
Charlotte
Frances
Helen
Nora
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Flora, Olivia, Pearl, Verne, Sylv2a, Katherine, Myra, Helen, Nora). The

first block contains the seven women whom Homans (1950:84) identifies as

members of one clique, while the second b10ck contains the five women

whom Homans terms members of the other clique. In Homans' evaluation,

the remaining six W0men were marginal to one or both cliques.

This application illustrates the usefulness of CONCOR as a method

for analyzing individual-by-committee membership data.

E. Levine's "Sphere of Influence"

Levine (1972) has studied a set of interlocked directorates 0f the

boards of major .American banks and corporations. Specifically, this

study starts with a 70 x 14 matrix whose (i, j)th entry is the number of

directors shared by corporation i and bank 1. His "study of network

representation" employs an unfolding variant of Guttman-Lingoes smallest

space analysis to produce a gnomonic map of the "sphere of influence."

We have applied the CONCOR algorithm separately to the rows and columns

of Levine's original 70 x 14 matrix in our own effort to identify

clusters of corporations and of banks which are highly interrelated.

Figures 14 and 15 show respectively the results of column (banks) and

r0W (corporations) applications.

With respect to columns (banks) of the 70 x 14 matrix, the first

bipartition (Fig. 14) separates the five Chicago banks from the others.

Repeating the CONCOR algorithm with respect to the nan-Chicago banks,

these latter are separated at the next step into New York banks and

Pittsburgh banks. The one exception is that Chemical Bank of New York

is placed with the Pittsburgh group. Levine's three-dimensional joint

space a1sa recovers the regional bank groupings.

39



w
'&

Chase (NYC) II Morgan (NYC ) Mellan Natl BaT Chemical Bank
First Natl City .. Bankers Trust ( NYC) ( Pillsburgh ). (NYC)

(NYC) Manufacturers Hanover Pittsbgh.Nat'l. Bank UnianNat1. Bank
(NYC) ( Pittsburgh) (Pillsburgh)

I

81 82 83 84

First Natl Bank
(Chicago)

American Natl Bank
(Chicago)

85

Continental Illinois
( Chicago)

Northern Trust Co.
( Chitoga)

Harris Trust Co.
( Chicago)

86

Fig. 14. Hierarchical clustering representation of repeated CONCOR

application on the columns (banks) in the Levine (1972) data.



I, 4, 7, 8,
II, 12, 17,
21, 25, 32,
33,39,48,
49,51

CI

64, 70, 71,
72,75, 81,
82,83,

C2

5, 10,
27, 34,
43,56,
78,84,
89,93,
96

C3

13, 18,
46,65,
68,79,
87

C4

21,,3,6~ '9,
19, 23, 26,
28,36,37,
38,42,45,
53,54, 55,
67, 85, 90,
91

C5

14, 15, 24,
40,41, 44,
63,77, 88

C6

Fig. 15. Hierarchical clustering representation of repeated CONCOR

application on the rows (corporations) in the Levine (1972)

data. Numbering follows Levine. (*)

(*)There is an error
which reports TRW
Fig. 5 (1972:19).
numbering.

in labeling TRW in Fig. 10 of Levine (1972:25),
as Corporation 92 instead of 93 as in his

We follow Levine's Fig. 5 for the present
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Fig, 16, (a) Number of director interlocks berween each of the six

sets of corporations obtained in Fig~ 15 and the sl.x sets

of banks in Flg. 1.40

(0) The result of norm,a.liziug the pr,avious matrix to have

both row and column margiGa1s = 1 (L e" doubly stochastic

farm) 0

(a)

B1 H2 B3 B4 H5 B6

Cl h. 25 3 17 0 7

C2. 1. 8 3 2 0 °
C3 1 12 18 0 1 1.

04 0 0 0 0 5 21

C5 39 12 4 ., 2. 1J

C6 6 3 0 ° 13 3

(0)

£1 B2 B3 B4 B5 £6

C1 CU)S94 0,224 (lo048 0,562 0 0,107

C2 0,074 0.358 0,239 0,329 0 0

C3 0.0331 0,24 0,643 0 0.0498 0.034

G~, 0 0 0 0 0.259 0,741

C5 0.636 0.118 0,0703 0.109 0.0491 0.0168

c6 0,197 0.0596 0 0 0,642 0,101
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PART II, APPLICATIONS OF MULTIDIMENSIONAL SCALING TO THE

SOCIAL STRUCTURE DATA OF PART I

Three applications will be developed, dealing respectively with

the Bank Wiring Room data, and the Sampson monastery data, and the

Newcomb-Nordlie fraternity data. The scaling procedures used are the

MDSCAL program of Kruskal (1964a,b) and the INDSCAL algorithm of Carroll

and Chang (1970). In addition to these scaling procedures, certain

aspects of the MDSCAL solution in the Bank Wiring group example have

also been interpreted threugh use of a recent non-hierarchical clustering

algorithm of Arabie and Shepard (1973) (acronym: ADCLUS). This last

means of representation is of special interest because it explicitly

makes allowance for the pessibility of overlapping clusters. This

raises the possibility of isolating ways in which the CONCOR algorithm,

and blockmodels more generally, may distort or oversimplify overlapping

membership properties inherent in social structures to which they are

applied.

In MDSCAL and ADCLUS applications, the algorithms are applied to

first-correlation matrices derived from raw data as in Part I (e.g.,

Figs. 3 and 8)0 It should be noted that similar matrices describing

correlations among sociometric positions have been studied using

factor analysis in a number of earlier investigations on other data

13(e.g., MacRae, 1960; see also Katz, 1947, Glanzer, and Glaser, 1959).

The data applications are now presented in the following order:

MDSCAL and ADCLUS on the Bank Wiring Room group; MDSCAL on the Sampson

monast",ry group; INDSCAL on the Newcomb Year 2 data.
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L MDSCAL and Non-hierarchical Clustering Analysis of the Bank

)iiring Group

As a first scaling application, Kruskal's nonmetric multidimensional

scaling program, MDSCAL (Kruskal, 1964a,b) is applied to the first

correlation matrix reported for the Bank Wiring data in Fig. 3. The

MDSCAL algorithm is well-known and its details will not be resummarized

here. The result of this application is shown in Fig. 17, which displays

the obtained two-dimensional MDSCAL 5M solution giving the best stress
. 14

(.126, formula 1) of 20 alternative random initial configurations.

Notice that this approach to network scaling is quite distinct from

that employed by Laumann and co-workers in studies of the social structure

of a German community elite (Laumann, 1973; Laumann and Pappi, 1973;

Laumann, Verbrugge, and Pappi, 1974). Specifically, Laumann and Pappi

start by defining a distance matrix in terms of the least-path distance

between individuals in a given network (all relational ties presumed

symmetric). There is no formation of a correlation matrix such as M1
in Fig. 3, and the Laumann approach measures connectivity rather than

similarity of structural pos:!.tion.

Compatibility of Fig. 17 with blockmodel approaches using CONCOR

is extremely good, to the point where one can infer most of the

hierarchical clustering shown in Fig. 4 from examining convex clusters

in the scaling solution of Fig. 17. The two central cliques A and B

identified in Romans I analysis (po 26 above) emerge as well-separated

clusters in the scaling. The wiremen W2 and W6, who are both essentially

classified by Romans as hangers-on, occur in positions close to, but

somewhat. removed from, their respective cliques. This summary statement
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Fig. 17. TWo-dimensional MDSCAL-5M solution for input proximity

data given by Fig, 3 (first-correlation matrix for the

Bank Wiring Group), Stress formula 1, stress ~ 12.6%.

Superimposed clusters are obtained from the CONCOR

results shown in Fig, 4.
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is also true, to a somewhat lesser extent, of S2 and (WS, 13), which the

4-block CONCOR model places as hangers-on to Romans' cliques A and B,

respectively, The further CONCOR applications reported in Fig, 4, which

lead to still finer partitionings, are also clearly reflected in the

scaling; thus clique A in the scaling breaks up into (Wl,W3) and

(SI,W4,Il), and this last cluster in tuin splits into II and (Sl, W4),

again reflecting the CONCOR performance shown in Fig, 4.

Despite this very close agreement between the two algorithms,

CONCOR and MDSCAL, there is alse good reason to probe as hard as possible

in the direction of non-hierarchical ways of describing the social

structure. In order to explore this direction, application has been made

of the recent ADGLUS algorithm of Arabie and Shepard (1973), Given a

single proximity matrix P = [Pij ] on n items, this algorithm is designed

to select a family} of (possibly overlapping) clusters or subsets of

these items and assign a positive numerical weight Wc to each cluster C,

in such a way as to achieve a best fit to the additive membership medel

if item
i is contained in cluster C,
O'the'Jtwise~

Le., a model which predicts the simi.lax:ity between two items to be the

sum of the weights of clusters containing both.

Starting from the correlation matrix in Fig, 3, application of the

ADGLUS algorithm led to the set of clusters and associated weights

(which accounted for 91.2% of the variance) shown in Fig. 18. Many of

the clusters are identical or close to those which are implied in the

CONCOR tree (Fig. 4). Xt is worth noting that the ADCLUS algorithm also

43



Fig. 18. List of clusters and cluster weights obtained from the Fig. 3

Bank Wiring Group correlation matrix by the ADCLUS (non-

hierarchical clustering) algorithm (Arabie and Shepard, 1973).

Weight Pr€lsent as
A +Cluster (C) (w

C
) Subtree in

Fig. 4
~.~~-,.

10 (W2,W5,I3) .4888 Yes 0

*2. (S2,13) 04155 No .500

*3, (W6 ,W7,W8, W9, S4) .3951 No 0167

*4. (W2,13) .3358 No ,500

*5. (WI, WZ ,W3, Sl,W4, 11) .2994 No .167

(Wl,~J3,Sl,H4) *6, .2742 No .200

7, (SI,W4,W5.W6,SZ,W7,
.2303 No .214

W8,W9,S4,Il,13)

8. (WI,W2,W5, Il) .2284 No .500

9. (Wl,W3) .21S1 Yes 0
I<

10. (W9,S4) ,2120 No .500

**110 (W5,W6,S4) .2012 No .667

(W6,S2,W7,WS,W9)
.*

12. .1189 No 0667

(W6, S2 ,13) *13. .1162 No .333

14. (W1,W2,W3,Sl,W4,W5,S2,I1) .1041 No .222

IS. (Sl,W6,S2,W7,W8,W9) ,OS08 No .286

16. (SI,W5,W8,W9,Il) ,0788 No .600

17. (WI, W3, Sl,W4,W5,S2, ~17, Il) .0640 No .400

18. (\'l'1,W2,In,W4, 11) .0635 No .333

19. (Sl,W4,W6,S2,W7,W8) ,0587 No ,500

* Differs from some subtree Fig. 4 only by one man (either added or subtracted).
** This cluster is the only cluster in the high'-weight group [Clusters 1-11]

whose meaningfulness is clearly in doubt.

+ .A = A(e):: min (I SAC.'), where T is the Fig. 4 tree, S~ T means that S
~T I SUC l

is a cluster implied by T (in the terminology of Boorman and Olivier,
1973, S is the node set of a subtree of T). and A is the standard set­
theoretic sylIl!llstric difference operation. I I denotes the size of a
set, II(G) has the properties of a distance measure (see Boorman, 1970).
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assigns major weight to some clusters which are not directly implied by

Fig. 4 and yet which have been given explicit interpretation in Romans'

verbal description, Among such clusters are (Wl,WZ,W3,Sl,W4,Il)

(w -;; ,30) and (W6,W7,W8,W9.S4) (w;;{ ,40), The second of these particular

clusters, however, appears in both of the Johnson RICLUS solutions for

the Bank Wiring data (see Fig. AI in Appendi1t 1) 0 Romans (1950:69) speaks

specifically of these two clusters as the two groups of individuals who

participated in games (cf. also Games matrix in Fig. 6), Neither of

these clusters appears in the CONCOR solution of Fig. 4, It should also

be observed that there is a clear elbow in the distribution of assigned

weights of the ADCLUS clusters, with a large jump from the cluster

(W5,W6,S4), with an assigned weight" .20, to the cluster

(W6,S2,W7.W8,W9), with an assigned weight" ,12,

There is, however, little question that the Bank Wiring Group data

basically sustains the hierarchical subgroup organization shown in

Fig. 4. It is possib1ethat the presence of this hierarchical cluster

structure may to some extent reflect the extent to which the Bank

Wiring data reports an isolated group in equilibrium. Again, it should

be stressed that hierarchical clustering structure has nothing in

general to do with the presence of social hierarchy, and represents a

totally distinct concept. Presence of such structure is further borne

out by the fourth column of Fig, 18, which reports a measure of the

discrepancy between each given ADCLUS cluster and the CONCOR tree in

Fig. 4, Taking the product moment correlation between the weights

Wc and the A column of Fig. 17, one obtains r = -,37. This indicates

a positive relation between the magnitude of ADCLUS weights and the
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property of being close to some CONCOR block, In other words, the

highest weight clusters in the ADCLUS solution also tend to be similar

to clusters obtained in the Fig, 4 hierarchical clustering,

2, MDSCAL Artalysi.s of the Sampson Monastery

The same scali.ng procedure as in the last section has also been

applied to the l8-man Sampson monastery group, Fi.gure 19 reports the

two-dimensi.onal MDSCAL solution starting with first-correlation matrix

used in the CONCOR analysis of this same data (Fig, 8 above), Again, the

scaling algorithm reproduces the basic blockmode1 dusters, The Young

Turks emerge as a distinct cluster, as also are the Loyal Opposition and

the Outcasts (see Fig, 19, and notice the strong similarity to Fig,

XVII [p, 370] in Sampson, 1969), The interstitial status of man 13

emerges very cleady from the scaling plot, and it is evident from this

position why there might be some ambiguity as to his placement (Loyal

Opposition or Outcasts, but it is not clear which), Men 8 and 10, whom

Sampson also views as w"verers, are clearly placed between the core

Loyal Opposition and the Young Turks, although c1Gser to the former

cluster, This last placement is one respect in which the scaling

soluti.on gives information which CONCOR does not (see Fig, 9),

The further applications of CONCOR, leading t<l the Fig, 9 tree,

are somewhat less consistent with the detailed structure af the scaling

solu1:ion than in the Bank Wiring case, Fer example, (10,11) and

(5,9,13) are both blocks obtained thro~,gh CONCQR, but these blocks

crosscut one anether in the Fig, 19 scaling,

Viewed within the context of the MDSCAL selutien, some of the mare

elongated clusters in Fig, 19 look suggestive of the "chaining" effects
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Local/
Opposition

Outcasts

Young Turks

Fig. 19. Two-dimensional MDSCAL-5 solution for input proximity

matrix data given by Fig. 7 (first-correlation matrix for

Sampson',s monastery data). Stress formula I, stress =

18.6%. Superimposed clusters selected from the CONCOR

*results in Fig. 9.

*There is one particular cluster (5, 9, 13) implied by Fig. 8 which
for reasons of clarity is not indicated in the present Figure.
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(Lance and Williams, 1967a; Jardine and Sibson,1971) that often

stigmatize the connectedness method in HICLUSo Specifically, "chaining"

is a generic term for the tendenoy displayed by certain clustering methods

to add new elements to pre-existing clusters as one moves up the

hierarchy, rather than for elements to act as the nucleus of new groups

(Lance and Williams, 1967a:374)0 However, more systematic investigation

in the Appendix indicates that the overall mathematical behavior of

CONCOR on the Sampson data is actually closer to the diameter method

than either method is to the connectedness method.

3. INDSCAL Analysis of the Newcomb Fraternity Data

In its entirety, Nord1ie-Newcomb data consists of complete preference

profiles for fraternity groups in each of two years, reported each week

for sixteen weeks (except for the absence of reported data from the ninth

week of Year 2; see Nord1ie, 1958). Henceforth, following Newcomb, we

will enumerate Year 2 weeks with references to this missing week and

starting with Week 0, thus O,l,2,3,4,5,6,7,8,X,10,ll,12,13,14,15. This

depth of longitudinal information is exceptional in the published

literature, and opens the possibility of systematically tracing the

evolution of ti,e social structure in each year (compare the use of

MDSCAL in Arabie and Boorman [1973] to trace the over-time changes in

the social structure of a vervet monkey troop, drawing on data of

Struhsaker [1967] and partition metrics developed in Boorman [1970] and

Boorman and Arabie [1972])0 Specifically, even very crude examination

of the Newcomb-Nordlie data suggests that the final situation in Week

15 of Year 2 was the equilibrium outcome of a process which starts in

Week 1 and rapidly approaches the final structure by Week 4 or Week 50
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For instance. consider the specific two-block model obtained earlier

(p, 24) and note that the number of errors associated with this blocking

is 1 (in the Z matrix, lower right) and 5 (in the a matrix, top and bottom

left). giving 6 errors in all, Over the fifteen weeks the number of

errors counted in this same way for each week lead to the IS-term sequence.

starting from Week 0 (37,33,30,30,2S,15,8.ll,lO,X,lO.9.ll.l0,9,6) (the

X reflects the data not recorded from Week 9), It is clear that initially

in Week 0 there is a very large number of errors which indicates

essentially no tendency toward the final blocking, that in Weeks l-S this

number of errors decreases sharply, and that from Weeks 6-lS the number

of errors is much lower and roughly constant. indicating that equilibrium

block structure has been essentially reached, although some individual

variability among weeks continues to be present,

We will now try to recapture this evolution in a way which does not

explicitly read backward from a blockmodsl analysis performed on data

in the final week, The Carroll-Chang INDSCAL algorithm is a natural

vehicle for making this attempt, BeCilllUSS use of INDSCAL has been almost

exclusively restricted to the psychological and marketing literature

(e.g" Wish and Carroll, 1973; Carroll. 1973 and references there), we

first give a brief restatement of aim of the algorithm,

The basic idea is one of dual scaling, Initially, using the

standard psychological interpretation, suppose that one has a group of

m subjects who each give a judged proximity matrix among n items, It is

desired to place the n items in a single ("stimulus") space reflecting

some kind of group (or composite) judgment, and simultaneously to place

the m subjects in a second ("subject") space reflecting individual
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differences among subjects, The very strong and specific hypothesis

is now made that subjects differ from one another only through differential

weights whi.'Ch they attach to the dimensions of a Euclidean stimulus space

haVing a non'-arbitrary orientation, Specifically, given m nxn proximity

(similarity) matrices Pl,PZ" 0' 'Pm' the idea of INDSCAL is first to

convert the matrices p. into distance matrices D, by means of a linear
J J

transformation and then to find n stimulus vectors

k

k

k

k

k
x - (x 'i'
,vn - ni i~l

and m subject vectors

~l ~ (wU ) i=l' 0 0 0' ~ ~ (wmi) i~l such that in a k-dimensional

"modified" Euclidean space, the distance between stimuli rand s, for

subject j is:

(For a more detailed description giving the exact least-squares target

f~ction and n~linear least-squares fitting procedures, see Carroll

and Chang, 1970,) Thus, the obtained vectors x. constitute the stimulus
""1.

space solution and the vectors w. constitute the subject space solution,
""'J .

It is to be emphasized that, unlike MOSCAL, this algorithm is a metric

scaling pr@c.edure, Leo, will not: give results invariant under monotone

transformati<:ln ,of the input pr<:lximity data, The stimulus space solution

also comes equipped with a set of prefer'red axes along with the weights

subject spaces will be given the following nonstandard interpretations:.
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Standard interpretation

Subjec,ts

Stimuli

Newcomb data interpretation

Weeks

Fraternity members,

No confusion should arise if it is explicitly emphasized that the

fraternity members in the Newcomb data are~ being treated as

analogous to subjects in the INDSCAL input,

The procedure is now as follows, Starting with the raw preference

rankings (as reported by Nordlie, 1958), the first step is to convert

these data into a form suitable for INDSCAL input. A number of ways of

doing this have been explored, but the simplest approach also turns out

to give the best results. Specifically, convert each preference matrix

for each week j into a matrix of distances among fraternity members

r,s,." by setting

1
D.(r,s) = -2(P (s)+P (r),

J r s
(AV)

where P (s) is the preference position assigned to s by r and P (r) isr s

the analogous position assigned to r by s (thus both P (s) and P (r)
r s

can assume integral values from 1 to 16 inclusive), In the absence of

the Week 9 data, there are then fifteen 17 x 17 matrices Do thus defined.
J

These are taken as distance matrices for INDSCAL input; the INDSCAL

algorithm has been run on this data in each of dimensions k = 4,3, and 2,

accounting, respectively, for 64,56, and 45% of the variance,

Figures 20 and 21 illustrate respectively two corresponding

two-dimensional projections of the four-dimensional INDSCAL subject-space

and stimulus-space solutions. Examining the subject-space solution

first, there is clearly a coherent trend across weeks, with the later
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4

(Dimension I)

Fig. 20. Subject-space fo~ two-dimensional INDSCAL solution on

Newcomb-Nordlie data (Year 2), showing evolution of group

structure ove~ the fifteen repo~ted weeks. Plot is

obtained f~om k~4 INDSCAL solution, projecting onto

dimensions I and 4.
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Fig. 21. Stimulus-space INDSCAL solution corresponding to Fig. 20,

obtained axes superimposed. Circled points correspond

to second (hangers-on) block in Fig. 2 CONCOR solution.
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weeks (6-15) being clustered much more tightly than the early ones

(0-5) , The same separation is also clear for three of the six other

two-dimensional projections impli.ed by the four-dimensional subject-space

solution; the k=2 INDSCAL subject-space solution shows an analogous

pattern, though here the clustering of the later weeks becomes so tight

as to make discrimination among these weeks difficult, These positive

results are reinforced when one now turns to the stimulus space solution

(Fig, 21), This seclimd solution places individual fraternity members

in a common two-dimensional Euclidean space, Superimposed on this space,

we have indicated the earlier two-block CONCOR division shown in Fig, 2,

It is clear that the members of the second CONCOR block (individuals

numbered 3,5,10,14,15,16), whom we earlier characterized as hangers-on,

are now placed mainly as outlying points in the INDSCAL solution, This

placement is consistent with earlie1: hangers-on interpretations and

suggests that INDSCAL is here recovering a kind of center-periphery

dimension in polar coordinates,

DISCUSSION

There are two separate topics for summary comments, The first

concerns the contribution of the CONCOR algorithm to the blockmodel

approach and its relation tG other blockmodel analyses, The second

topic concerns the comparative merits of blockmodels versus

multidimensional scaling approaches to social network data,

As far as the CONCOR algorithm specifically is concerned, the

applications we have explored in the present paper show that this

algorithm produces results which stand generally in clGse relatiGn tG
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trial-and-error blockmodels satisfying White's criterion of lean fit,

Specifically, the partitioningsproduced by CONCOR are in general close

to a strict lean~fit blockmodel if any such model exists (e,g" see the

Fig, 5 comparison of CONCOR with White I s analysis). This is true even

though the CONCOR algorithm is not explicitly guided by a search for

zeroblocks. The CONCOR algorithm hence emerges as a useful way of

systematically searching for' blockmodels on unexplored raw data, Of

course, CONCOR is clearly not the only algorithm which could be used to

find blockmodels, and other hierarchical clustering algorithms applied

to a first-correlation matrix may in fact produce similar results, In

specific compariSOnS with HICLUS on various data sets, there is evidence

that CONCOR performs in a superior way at the four-block level, However,

the actual utility of CONCOR cannot be assessed on so narrow a basis,

Most importantly, unlike standard hierarchical clustering algorithms

such as Johnson's HICLUS (Johnson, 1967), CONCOR admits full exploitation

of row-column duality because of the possibility of blocking separately

on both rows and columns of rectangular matrices. While we have not

emphasized these alternatives for sociometric data (examples A-C in

Part I), the nons0ciometric examples D and E make heavy use of this dual

blocking possibilityo CONCOR therefore emerges as a natural way of

unifying algorithmic approaches to the several distinct network-related

kinds of social structural data, including committee membership data as

well as sociometric data (Breiger, 1974),

In most data investigations, it is reasonable and desirable that

both the strict zeroblock criterion and the CONCOR algorithm should be

independently appliedo The search for blockmodels which are strict lean

51



fits to given data is greatly facilitated by an unpublished algorithm

due to G, fl, HeiL This algodthm takes as input a given blockmodel

(e,g" Fig, lc) and given data (e,g" Fig, la), and produces as output a

list of all (if any) permutations of the original data which conform to

the proposedblockmodel in the lean fit sense (e,g" Fig, lb), This

algorithm will be described in detail elsewhere (see Heil and White, 1974).

One extremely valuable feature of the Heil algorithm, which is not shared

by CONCOR, is the light which it is able to cast on nonuniqueness of

blockmodel solutions, There is no question that many data sets possess

some inherent ambiguity; we have already run across cases of such

ambiguity in the presence of "interstitial" men in the Sampson data

(po 34 abave) 0 Bringing out this ambiguity is clearly nat a task which

can be accomplished by a single algorithm like CONCOR producing a unique

solution, It is also very interesting that one may be able ta abtain

partitionings identical to CONCOR by directly applying the Heil algorithm

to raw data under~ an apprapriately chosen blockmodel "hypothesis,"

Developments along this last line are pursued in White and Breiger (1974),

Next, there is the problem of assessing the scaling analyses in

Part II, The result of applying MDSCAL-5 M to the Hamans and Sampson

first-correlation matrices is impressive (and especially so in the light

of the Homans and Sampson analyses) and is also in excellent agreement

with the output of CONCOR on the same matrix, This suggests that MDSCAL

of a first-correlation matrix is a valuable probe into a concretely

presented social structure, This way of applying MDSCAL appears new and

supplements the use of more classical techniques liks factor analysis

15(e,g" MacRae, 1960),
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This consideration leads to'a very important additional point. The most

interesting substantive results of the present paper have been obtained

when we have returned to the original raw data and imposed on this data

the row and column permutations implied by a CONCOR blocking (e.g.,

Figs. 6 and 10). This feedback to underlying relational data is a

distinctive feature of blockmodel analysis which is not shared by scaling

procedures. The ultimate aim of blo~kmodel analysis is to analyze the

network of relations among blocks; in fact, blocks are defined in the

first place through reference to such a network. In this sense, it is

actually misleading to speak of blockmodels in terms of structural

equivalence of individuals alone: blockmodels imply equivalence of

individuals in the same block, but, at the same time also imply networks

16of relations among blocks, By contrast, the aim of the scaling

applications is to recreate as much as possible of a social structure in

a Euclidean space (more generally, in a Mlnkowski r-space), dispensing

with the original network structure and substituting a more familiar

o 17spatJ.al one.

Finally, we should again stress the complementarity between the two

modes of analysis. Scalings obtained as in Figs. 17-21 explicitly lose

track of network structure, but bring out the geometry of structural

position in a much richer way than is possible through any clustering

technique (e.g., by use of CONCOR). Blockmodel analyses are inherently

restricted to clusterings, but make use of these clusterings to extract

direct information out of raw network structure.
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APPENDIX

Numerical Studies of the Simi.larity of CONCOR to Johnson's

Connectedness and Diameter Methods in Two Data Cases

The present appendix gives a combinatorial approach to the problem

of comparing CONCOR with the two methods of Johnson's HIClUS algorithm

(connectedness and diameter methods). Specifically, we view the output

of each hierarchical clustering method as a binary tree and we apply one

of the tree distances S(Tl,T
Z

) developed in Boorman and Olivier (1973).

One difference between CONCOR and HIClUS is the absence of any

valuation of levels in CONCOR trees analogous to cluster values ~ in

Johnson's procedure (see also Fig. 7). In the terminology of Boorman

and Olivier (1973), the output of CONCOR is hence a bare tree, whereas

the HIClUS methods lead to valued trees. In order to compare bare to

valued trees, either of two strategies may be followed. On the one

hand, there are various possible procedures for converting a bare tree

into a valued tree, e. g., by assigning a value to each node which is the

size of the corresponding subtree. Alternatively, it is possible to

treat any valued tree as bare by simply disregarding the associated

cluster values. We presently follow the latter approach as the less

artificial strategy.

Given any bare binary tree (e.g., as represented in Figs. 3, 9,

etc.) one may equivalently represent the tree as the collection of all

its node sets, i.e., sets of items falling under some given node. Thus

in the Bank Wiring tree (Sl, W4, II) and (WI, W3, Sl, W4, II) are node
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sets, whereas (Sl, W4, W3) is not. Notice that the full structure of

the original tree may be recovered from the collection of all its node

sets, so that no information is lost in passing from the original tree

structure to this set of sets.

Any binary tree on n items will then lead to a collection of n-Z

subsets, where without loss of information one ignores both the trivial

node set consisting of all items and the singleton sets formed by taking

each item alone (i.e., the highest and lowest levels of hierarchical

clustering) •

Then one may define as follows a distance S(T
1

,TZ) between any two

bare trees:

Definition (=Definition 1.1 in Boorman and Olivier [1973:Z9]).

n-Z
S(T1,TZ) = min::S I w.tlXf (.) I , where

f i=l ~ ~

formed from T1 , {xJ:=~ is the analogous collection formed from TZ'

and f is a permutation of the first n-Z integers. Here t; represents the

operation of forming the symmetric difference between two sets (i.e., the

set of elements contained in one or the other, but not in both), and I I
denotes the size of a set.

The distance S may be shown to have various desirable properties,

and in particular is a metric. The definition of S represents a

special case of a very general principle which may be employed to define

structural distances in many situations (Boorman, 1970). In general,

the ,computation of S(T
1

, TZ) reduces to an optimal assignment problem

(Ford and Fulkerson, 196Z) , but in simple cases the optimal assignment

may be readily computed without recourse to a linear programming algorithm.
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We now apply the metric S(Tl,TZ) to the present problem. Figures

Al and AZ show respectively the node sets obtained through each of the

three methods (CONCOR, diameter, connectedness) on the Bank Wiring data

and the Sampson data respectively. Both figures are presented in such

a way that identical clusters fallon the same line.

To compute S(T
l

, T
Z

) between any pair of methods in Figs. Al-AZ.

it is only necessary to find an optimum correspondence between clusters

not produced by both methods. Figures A3-A4 show calculation of the

optimum correspondences for the two data sets. Given the correspondence,

calculation of S(Tl,TZ) is then immediate; the results are also

reported in Figs. A3-A4.

The result of these calculations shows that there is no simple

relation among the three methods. In the Bank Wiring case, CONCOR is

more similar to both HICLUS methods than either of these methods is to

the other. Of the two methods, CONCOR is more similar to the connected­

ness method. Taken alone, this result is evidence for placing CONCOR

in an intermediate position on a diameter-connectedness continuum, hence

following the classificatory strategy of Jardine and Sibson (1971) and

paralleling the intermediate position on such a continuum of various

other clustering methods (e.g., Sokal end Michener [1958]; Hubert [197Z]).

On the other hand, this situation is reversed in the case of the Sampson

data. Here the two HICLUS methods are actually closer to one another

than CONCOR is to the connectedness method. In this second case,

therefore, the relevancy of the diameter-connectedness continuum

proposed by Jardine and Sibson quite clearly breaks down. Also, this

result helps to alleviate suspicions that CONCOR may in general behave
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Fig. AI. Clusters produced by three algorithms (CQNCOR, diameter method,

connectedness method) on the Bank Wiring data. Trivial

clusters (consisting of single individuals or the entire

population) are not recorded; since these clusters are

produced by all methods, they do not affect computation of

S(TI,TZ)' Identical clusters are placed on the same line.

CONCOR Diameter method Connectedness method

Cl: (Wl,W3) Dl: (Wl,W3) Kl: (WI,W3)

C2 : (Sl,W4) D2 : (Sl,W4) KZ: (Sl,W4)

C3: (Sl,W4, Il)

C4: (Wl,W3,Sl,W4,Il) K3: (WI,W3, Sl,W4, 11)

C5: (W2,W5) D3: (W2, W5) K4: (WZ ,W5)

C6: (WZ,W5, 13) K5: (WZ,W5,I3)

C7: (Wl,W3,Sl,W4, n,
W2,W5,I3)

CS: (W6, S2)

C9: (WS,W9) D4: (WS ,W9) K6: (WS,W9)

CIO: (W7,WS,W9) D5: (W7,WS,W9) K7: (W7,WS,W9)

Cll: (W7,WS,W9,S4) K8: (W7, WS,W9, S4)

C12: (W6,S2,W7,W8,W9,S4)

D6: (W2 ,W5 , Il)

D7: (Wl,W3,Sl,W4)

DS: (Wl,W3,Sl,W4,W2,W5,Il)

D9: (S2,13)

DI0: (W6,S4)

DII: (W7,WS,W9,W6,S4)

DIZ: (In,W8 ,W9, W6 ,S4 ,S2, 13)
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K9: (WI,W3,SI,W4)

KID: (W7,WS,W9,S4,W6)

Kll: (W2,W5,13,S2)

K12: (Il.Wl,W3,Sl,W4,

SZ,I3,W2,W5)



Fig, J!,2, As Fig, AI, for the Sampson monastery data,

CONCOR Diameter method Connectedness method

C1: (1,7)
C2 : (2,15) D1: (2,15) K1: (2,15)
C3: (1,7,2,15) D2 : (1,7,2,15)
C4: (12,14) D3: (12,14)
C5: (12,14,16) D4: (12,14,16)
C6 : (1,7,2,15,12,14,16) D5 : (1,7,2,15,12,14,16) K2: (1,7,2,15,12,

14,16)
C7: (17,18) D6 : (17 ,18) K3: (17,18)
C8: (3,17,18) D7: (3,17,18) K4: (3,17 ,18)
C9 : (1,7,2,15,12,14,16,

3,17,18)
CI0: (4,6)
Cll: (4,6,8)
C12: (10,11)
c13: (4,6,8,10,11)
C14: (5,9) D8: (5,9)
C15: (5,9,13)
C16 : (4,6,8,10,11,5,9,13)

D9 : (6,8)
DIO: (10,6,8)
Dll: (4,11) K5: (4,11)
DIZ: (5,9,4,11)
D13: (5,9,4,11,10,6,8) K6: (5,9,4,11,10,6,8)
D14: (7,2,15)
fi15: (13,3,17,18) K7: (13,3,17,18)
D16: (1,7,2,15,16,12, K8: (1,7,2,15,16,12,

14,13,3,17,18) 14,13,3,17,18)
K9: (9,4,11)

K10: (10,9,4,11)
Kll: (6,10,9,4,11)
K12: (8,6,10,9,4,11)
K13: (2,15,16)
K14: (2,14,15,16)
K15: (1,2,14,15,16)
K16: (7,1,2,14,15,16)
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Fig. AJ. Computation of optimal assignment between distinct clusters
produced by the different methods on the Bank Wiring data.
Clusters referred to in notation of Fig. AI. An optimal
assignment (not necessarily unique) pairs corresponding columns
and rows. e.g. (in tal) C3 to D9, c4 to D7, etc. S(T1,TZ) is
hence given by the t:cace T = ~ a o 0 for each of the interger­
valued matrices shown. i :l.J.

CONCOR­
diameter
method

(a) D9

C3 5

C4 7

C6 3

C7 8

C8 2

ell 6

el2 6

S(CONCOR. diameter)

D7

3

l.

1

4

6

8

10

= 13

D6

4

6

2

5

5

7

9

D8

4

2

6

1

9

11

13

D10

5

7

5

10

2

4

4

Dll D12

8 10

10 12

8 8

13 13

5 5

1 3

1 1

KIO

8

13

5

1

lQ,1K12

6

1

9

13

3

4

6

K9

C3

C7

C12 10

C8

7

6

4

8

S(CONCOR, connectedness) = 9

CONCOR­
connectedness
method

(b)

S(diameter, connectedness)

Kl2 Kll K3(c) Diameter
me thod­
connectedness
method

D6

D8

D9

DIO

D12

K5

2

6

3

5

8

6

2

7

11

12

3

7

2

6

7

= 16

6

2

7

7

12

K8

7

11

6

4

:3

56c



Fig, A4, As Fi.g, A3. for the Sampson monastery data, Notation for
clusters follows Fig, AZ,

D14 D16 Dll D9 D12 DID D15 D13
(a) CON COR-

C1 3 8 4 4 6 5 6 9diameter
C9 7 2 12 12 14 13 8 17

method
CI0 5 12 2 2 4 3 6 5
Cll 6 13 3 1 5 2 7 4
C12 5 12 2 4 4 3 6 5
C13 8 15 3 3 5 2 9 2
C15 6 11 5 5 3 6 5 6
C16 11 16 6 6 4 5 10 1

S(CONCOR. diameter) ~ 20

K15 K16 K14K13 K8 K5 Kll KI0 Kl2 K9 K7 K6
(b) CONCOR-

Cl 5 4 6 5 9 4 7 6 8 5 6 9
connectedness

C3 3 2 4 3 7 6 9 8 10 7 8 11
method C4 5 6 4 5 9 4 7 6 8 5 6 9

C5 4 5 3 4 8 5 8 7 9 6 7 10
C9 5 4 6 7 1 12 15 14 16 13 8 17
CIO 7 8 6 5 13 2 3 4 4 3 6 5
Cll 8 9 7 6 14 3 4 5 3 4 7 4
C12 7 8 6 5 13 2 3 2 4 3 6 5
C13 10 11 9 8 16 3 2 3 1 4 9 2
CI4 7 8 6 5 13 4 5 4 6 3 6 5
C15 8 9 7 6 12 5 6 5 7 4 5 6
CI6 13 14 12 11 17 6 3 4 2 5 10 1

S(CONCOR. connectedness) = 34

K16 K14 K15 K9 K12 K11 K10 K13
(c) Diameter

D2 2 4 3 7 10 9 8 3method-
D3 6 4 5 5 8 7 6 5connectedness
D4 5 3 4 6 9 8 7 4

method
D8 8 6 7 3 6 5 4 5
D9 8 6 7 5 4 5 6 5
DID 9 7 8 6 3 4 5 6
D12 10 8 9 1 4 3 2 7
D14 3 3 4 6 9 8 7 2

S(diameter. connectedness) = 25
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quite similarly to the connectedness method, and in particular that

CONCOR may be prone to similar difficulties of a "chaining" type· (see

also above, pp, 45-46),

Of course, all results based on ~ priori metrics do not take accourit

of substantive features of particular data sets, and hence have

limitations for this reason. Also, there is as yet no developed

distribution theory for the values of tree metrics, which would enable

statements about levels of significance to be made, Ling (1971) presents

results which constitute a start in this direction, Prior to development

of such a theory, only ordinal comparisons among distances between

clusterings may be made with any rigor,
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FOOTNOTES TO TEXT

1
The algorithm was initially suggested by the empirical discovery of

convergence of iterated correlations (see below,p. 12) on network data

reporting contacts among research scientists in an emerging biomedical

specialty area (described in Griffith, Maier, and Miller [1973]).

Subsequently, Dr. Tragg of the University of Surrey pointed out that

work constituted an independent rediscovery of the "iterative,

intercolumnar correlation analysis" proposed by Mcquitty and his co-workers

(Mcquitty, 1968; Mcquitty and Clark, 1968; Clark and Mcquitty, 1970).

See text for further discussion.

2A closely related view is expressed by Needham (1965:117):

The moral of this is that we should not look for an

"internal" definition of a cluster, that is, one depending

on the resemblance of the members to each other, but rather

for an "external" definition, that is, one depending on the

non-resemblance of members and non-members,

Translating "resemblance" into "presence of network tiee," it is

clear that the idea here is very similar to the present conception.

n

i=l'

n

i=l' J; = (Yi)
x y

0 y'
~ ;.J

- n - 1 I
where~' = (xi-x) i=l' x = ;:: Exi , etc,. and • and 1\ \ denote the

Euclidean inner product and norm, respectively. If x· or y' = 0 then
"""' f-' ,v

r(x,y) is fOl<Dally undefined, which gives rise to certain exceptions'" ~
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Ed., =
j J
row-

to the basic convergence fact (2-BLOCK),

4Mcquitty and Clark (1968) attempt te> give a fe>nnal proof ef the

convergence, but their argument does not appear to be rigerous and gives

little information on the mathematical behavior of the algorithm.

5The knife-edge character of the exceptions was pointed eut and

investigated by Joseph Schwartz, Clark and Mcquitty (1970) report

certain exceptions to the convergence; additional classes of exceptions

have also been communicated to us by Ingram Olkin of the Stanford

Pepartment of Statistics (personal communication).

6A second formal class of exceptions which should also be noted occurs

~when MO is taken to be of the form MO(i,j) = ~ ; where E c. =
, N i ~

:N (i.e., where M
O

corresponds to the standard null hype thesis of

:c<llumn independence in a centingency table). Then forming correlatiens

either between rows or between cGlunms, one obtains ~ (i,j) = 1 for all

i and j and it is clear that statement (2) fails.

7In principle, the semigreup (w~ite, 1969) and categery-functer (Lorrain

and White, 1971) approaches to the algebraic analysis of sedal netwerks

alse give an important place to simultaneous treatment of multiple types

of tie; , 'However, existing computational methods do net easily extend te

handle more than two distinct relations simultaneously, As a result,

for many applications it is necessary to aggregate quite substantially

before applying the algebra,

8White (1974b) also reports a more refined five-bleck medel ef the same

data, White and Breiger (1974) develop a three-block medel which is a
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refinement of the two-block model in the text, viz. (13,9,17,1,.8,6,4),

(7,11,12,2), (14,3,10,16,5,15). This three-block model is obtained by

using the Reil enumeration algorithm (see p. 52 below) rather than

CONCOR, and hence provides an interesting check on the CONCOR solution.

9Letter notation for 2 x 2 blockmodels follows conventions adopted by

White (1974b, Table 1).

10 .White (1974b) actually presents two blockmodels for the Romans data.

We discuss only his model which closely resembles our own. See White

(in press) for a discussion of the substantive differences between his

two models of the Bank Wiring group data.

l~e "Trading Jobs" matrix is also not symmetric (in fact, it is

asymmetric) but the tie density is very low (number of entries = 7;

see Romans [1950:67J) and hence this relation is little help in

clarifying status relations among groups.

12The two methods are also referred to in the literature by a wide variety

of other terms. The diameter method is also referred to as the

compactness or minimum method (Johnson, 1967), the furthest-neighbor

method (Lance and Williams, 1967a), and the complete-link method

(Jardine and Sibson, 1971), Similarly, the connectedness method is

also referred to as the minimum method (Johnson, 1967), nearest-neighbor

method (Lance and Williams, 1967a), and single-link method (Jardine and

Sibson, 1971). The terminological jungle is a nuisance.

l3There are some slight variants in procedure. For example, Katz (1947)

proposes to leave out any mutual choices between two individuals i and

j when correlating their positions in data given by a standard
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positive-choice sociometric prClcedure. Obviously, this modification

will make little effective difference if the group is of any size.

14It is noteworthy that the configuration (in Fig. 17) corresponding to

the lowest stress value of .126 was by no means the first obtained in

the series of 20 different initial configurations. (In fact, Fig. 17

was the thirteenth obtained solution; the twelfth solution had yielded

a stress of .321.) The value of .126 for a two-dimensional solution

with 14 stimuli is, of course, quite respectable according to Klahr's

(1969) Monte Carlo study. However, arguments have been advanced

elsewhere (Arabie, 1973) as to why the values in that Monte Carlo study

(which, along with that Illf Stenson and Knlllll [1969] gives the most

useful data currently available) are inflated, owing to unfortunate

properties of Kruekal's L-configuration.

15It is worth noting, however, that MDSCAL (as also INDSCAL) is an

expensive technique by virtually any measure, especially in the light

of the initial configuration problems discussed in the preceding

footnote. One major practical side of CONCOR(shared, Illf course, with

many other hierarchical clustering methods) is that it is cheap and

extremely easy to implement.

l6Note , however, that in introducing blockmodels one is explicitly

declllupling structural equivalence from the idea of complllunding or

clllncatenating social relationships (contrast White, 1963; Lorrain and

White, 1971; also White, 1970; Boyd, 1969). This is the major

substantive break between blockmllldels and the earlier algebraic

approaches to social network analysis represented by work of White,
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Lorrain, Boyd, and other investigators,

l7For a derivation of the relation between Euclidean distance models

(e,go, the MDSCAL solutions presented here) and hierarchical

representations such as Johnson's methods, see Holman (1972),
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