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Abstract

A methed of hierarchical clustering for relational data is
.presented, which begins by forming a2 new square matrix of product-
mement correlatiens between the colums (or rows) of the original data
(represented as an n x m matrix). Iterative application of this simple
procedure will in general converge to a matrix which may be permuted inte
the blecked form [;i miJ . This convergence property may be used as the
basis of an algerithm (CONCOR) for hierarchical clustering. The CONCOR
procedure is applied to several illustrative sets of social network
data and is found te give results which are highly compatible with
analyses and interpretations of the same data using the bleckmedel
approach of White (in press). The results using CONCOR are then compared

with results ebtained using altermative methods of clustering and scaling

(MDSGCAL, INDSCAL, HICLUS, ADCLUS) on the same data sets,
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The first part of this paper degcribes an efficiént_algo:ithm for
simultgqgeus clustering of one oT more matrices and develeops
'applications‘te sociemetric“and cher social structq;a@ datao; Altﬁgqgh
the appreach. was originally motivated by applications_to strict;y
binary network data, the algorithm can alsec be applied tq,matrices
reportigg_data in integer or continucus form (engng”épplication to
Sampsop's monastery data, pp. 32-38 below). The procgdure hence
represents a technigue of considerablie ggnerality énd gives prqmise of
unifyipg a wide range of data analyses. From a formal point of view,r
the output of the algorithm may be represented as a hierarchical
c;ugtering-(see Eigse 4 and 9 below). Uniike standard hierarqhical
clustering methods, hewever, the input_to_the present algerithm is not
nepessarily—a proximity or a distance matrix, but_rather one or more
matrices representing arbitrary kinds of relationship (see pp,llz ff.
b_elew)e

The Sgcond part of.the paper cempares the_results of the main

algorithm te these of multidimensional scaling algorithms applied to




some ¢f the same data_(the MDS CAL a;gorithm of_Shepard {1962a, b] and
Kruskal [1964a, b] andrghé INDSCAﬁ.algorithﬁ Qf Carr&ll.and Chang [19701).
This second part alse reports expleratory sociometric applications of a
recent nonhierarchical clustering algerithm of AraEie and Shepard

(1973).

PART I.  DESCRIPTION AND APPLICATION OF THE ALGQRITHM

When several different disciplines encounter similar problems in
research, it often happens that investigaters in different éreas make
parallel and independent discoveries, with considerable duplicatien of
effért entailed. Develeopments in hierarchical clustering constitute a
prime éxampie'@f such an occurrence. For instance, the most commonly
.ﬁséd ﬁéthodé of hierérchical.clﬁstering in psychological research are
those of Johnson:(1967)o However, as he pointed ecut, both of his
methods hé&'élready been independentlyrdiscovéred. Specifically, the
connectedness method (see p.3l for details) had been described by
Sneath:(1957), and the diameter method by Screnson (1948)., Yet until
Johnsen's (1967) péper appeared, hierarchical clustering was virtuélly
unheard of by psychoiegists doing research in areas other than test
theory.

‘AS in the case of Johnson's methods, the algorithim we present here
reﬁresenté an independent discovery of a method published earlier
(McQuitty, 1967; McQuitty and Clark, 1968). McQuitty's work, although
directed toward'psychometricians, has received little attentien from
psychologists and none at all from sociologists, probably because most

of his illustrative applications have used artificial data having



limited interest. Since we have focund that this methed of hierarchical
clustering can yield very meaningful results when applied to data with
which sociologists and social psychelegists are already familiar, we:

are presenting the present algorithm in a context that is quite different
from McQuitty's.

We begin by describing the basic algorithm (acrenym: CONCOR) as it
applies to partitioning the vertices of ‘a graph inte ‘similarity classes
("blocks"). There are direct generalizations to handling the simul-
taneous blocking of multigraph data, i.e., data which report mere than
one distinct kind of relation on the same population (pp. 16~17 leOW)e
As will later become apparent frem the Bank Wiring Group and other
applicatiens, the ability to handle such multiple tie data is important
for many analyses of concrete social structures.

Expressed in sociometric language, the basis of the procedure
“consists of systematically grouping together actors in a network who
oécupy similar pesitions with respect to ties sent, ties received, or
both. The method is a rapidly convergent algerithm which (aside from
exceptional cases of largely mathematical interest) will produce a
bipartition of the set of acters (i.e., a partition into exactly twe
equivalence ¢lasses). As described below (Section 2D) this algorithm .
can be applied repeatedly at the discretion ef the investigater to
produce a partition of the actors with any desired degree of fineness.

The algorithm is applied te a number of illustrative data sets,
These include: (1) secial netwerk data of sociometric or observed-
reported type; (2) participation data on women in a Seuthern city; and
(3) data on directorship interlecks among seventy large corporations
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-and fourteen banks (originally studied by Levine [1972] from a multi-
dimensional scaling standpoint). All data sets studied invo;ve

comparatively small populatiens & 100}, though there are ne basic

" theeretical reasons for presence of this limitation. Emphasis will be

placed on the interpretability of the obtained partitions in the light
6f the ‘original relational data, as well as on connections between the
present methed and ether metheds of analysis applied by previous
investigators of the same-data. (See also Part II, where specific
comparisons with multidimensienal scaling are develeped at length,)

‘1. Structural Equivalence and Blockmedels:

This section provides substantive backgreund which will motivate

develepment of the algorithm and its applicatiens. Thexreader,who;
wishes immediate exposure to details may turn directly te Sectioen. 2.
Hewever, the ideas discussed below, in particular the zeroblock cencept,
have direct bearing on later ‘data applications and will there be quoted
freely.

Motivated by ideas of classical theorists such as Nadel (1957),
White and collaberaters have undertaken the development of formal
theories which place great emphasis on the concept of "structural
equivalence” in the description of cencrete social structures (White,
1963, 1969; Lorrain and White, 1971; Bernard, 1971; Breiger, 1974). . The
structural equivalence concept is grounded in the network metaphors of

““theorists such as Simmel: (1955):
so0 @8 the development of society preogresses, each individual“
‘egtablighes for himself centacts with persons who stand

- outside [his] original group-affiliation, but who are
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'vrelated' te him by virtue of an actual similarity of talents,

inclinations, activiti@ég gend s0 on. The association of

persons because of external coexistence is more and more

superse&ed by association in accordance with internal

reiationshipsu s0opractical considerations bind together

like individuals9 who are otherwise affiliated with quite

alien and unrelated groups,

{Compare alsoc the work of von Wiese, who was strengly influenced by
Simmel; e.g., von Wiese [1941: 29-301).

Structural equivalence in White's work is seen as a unifyiﬁg concept
cross—cutting theories of rcles, kinship, scciometry, and organization,
where it repeétedly appears in many different guises and on various
different levels of analysis. Although the c@ncépt of structural
eqﬁivaiencé has been used in & number of distimct ways (Lerrain and
White, 1971; Fararo, 1973), all these cited developments have adhered
toc a highly algebraic~—and correspondingly rigid--concept of what
structural squivalence should formally mean. Specifically, in any
network (possibly invelwing multipie binary relaticns), the formal
definition of structural equivalence is as fellows:

Definition 1. Let S be a set and let{ﬁ%}‘ oml be a set of binary
relations om €, i.2., a set of subsets of 5xS. ;;en individuals a,

begs are structurally equivalent with respect to the (multiple) network

defined by {fRi}. izl if and only if the following criterion is satisfied:

for any c£&s and any relation Ria

= (1) aRc w)bRic
(2) - cRia_-(:;: cR,b.
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This is a direct transcription of an equivalence ("indiscernibility")

concept famliliar in model theory within mathematical logic (e.g.,

Robinson, 1965; Schoenfield, 1967). However, it is immediately clear

that if the abeove definition is applied directly tc raw data,_irregun
larities in :eal social structures of-any size will allow very few
instances of structural equivalence to be present, Hence, without some
cructal weakening or idealization, the equivalenge concept as given is

essentially vacucus.

The route followed in the original work of White {(cited above)
gentered around performing homomorphisms on algebraic structures (e.g.,
semigroups) generated by raw data matrices, and then employing such
homomerphisms to induce variocus equivalence patterns. Specifically, the
aim is to achieve structural equivalence in a reduced network, i.e., in
.the image network cbtained from raw data when this data is subjected to
a '"functorial mapping" (essentially a generalized homemerphism)., There
is no need to describe here the detailed mechanics of performing such a
homomorphism (see Lorrain and White, 1971; see also Fararo, 1973), but
the cruecial point is that the image network under homemorphism will
typically be a much fatter network than the coriginal one, i.e., a
network with a much higher density of ties. For this reason alone it is
not surprising that structural equivalence among actors will eventually
emerge as a chain ef successive homeomorphic redugtions is app_‘lied°

Taken in conjunction with a mere broadly based rationale for the
homomorphism concept (developed at length in White, 1969), this
homemorphism strategy has been effective for giving insight into the
"gkeletal" structure of some varieties of complex secial networks
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(see ‘examples developed at length in Lorrain, in press). However, . the
approach has the crucial feature that it comes in a package: in order to
achieve structural equivalence at the level of individual actors, one
mist make a long detour through complidated algebraic procedures
involving powerful and highly'restrictivé assumptions on the treatment
of compound ties (indireat'sociai relaﬁiqnghips)c

In response to these limitatiéns,-White has subsequently developed
a second, and distinct, éppraaéh to modeliﬁg social network data and
finding structural equivalence patternéc This second approach is the
point of departure for the development of the present algorithm and we
will therefore discuss it in some detailo- In later sections, the
relaticn between White's own analyses and the results of the present
algorithm will frequently Be cited.

This second line of attack (White; 1973, 1974a, b; White and
Breiger, 1974} centers around the concept of a "blockm@dele“ This is a
very simple and natural éaﬁbinatdrial.idéai unlike the homomorphism
analyses it involves oenly ﬁinimai f@rmél developments. For illustrative
purposes, consider first the (imaginary) data ef Fig. la. For simplicity,
this example invelves only one kind of reported tie; generalizations to
mul tiple types of ties will be deferred until later, in the centext of
real data (e.g., Fig. 6).

The {(i,j)th entry in the Fig. la matrix reports the presence ("1")
or absence ("0") of a network tie from individual i te individual j.
Both rows and columns are hence to be thought of as indexing the same
population of individuals in some given order which is the same for both
rows and columns, Otherwise, however, the row (respectively, columm)
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Figu la'

Imaginary data illustrating bleckmodels, lean fit, and zeroblecks.
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-ordering as p:esented is quite arbitrary. In this cbvious comment lies
the source of blockmodel developments. By imposing the same permutation
en beth rows and columis, one may be able to. discover a new way of
presenting the data which is more interpretable {see Fig...lb, which
reperts a permutation of the Fig. la matrix}). The aim of this: -
rearrangement may be made more definite by specifying that what is being
sought is ‘a permutation which reveals substantial -gubmatrices all of
whose entries are zero (White's term for such matrices is zercblocks;
under ‘the superimpesed division, Fig. 1b contains three zercblocks).
Finally, then, one may give a summary description of the data by means of a
blockmodel - (Fig. le), where a "0" in the model corresponds to a zercbloeck
in the data matrix while & "1" in the model corresponds to a bleck in

the data matrix which contains at least some 1's. ..

What is being developed here is a new kind of generalization of the
concept of structural equivalence, where now o¢ne is treating individuals
in the same block as equivalent. [A mincr terminclogical ambiguity .
arises here, since the term "block” will be used to denote both a set
of actors and also a submatrix of a blocked matrix (see again Fig. 1b).
Context should always make the intent transparent.] -There is ne longer
any question of "massaging" the originsl netwoerk data, as in the case of

the algebraic developments using homomorphisms. The same data are

retained and instead it is the equivalence concept itself which is

weakened.
The formsl idea may be made more precise by starting from a given
blockmodel (e.g., that in Fig. le) and making the following definition:
Definition 2. A blockmodel is a lean fit to & given data matrix M if




and only if there exists a permutation of M, leading to a permuted matrix
ﬁﬁ,.together with a subdivision of M%a such that:
(1) Zeroblocks in the permuted matrix correspond to 0's in the
blockmodel;
(2) Blecks containing seme l's in the permuted matrix correspond
" to 1's in the blockmedel (compare again Figs. 1b and lc).

 There is a basic asymmetry here: zercblecks are expected to .contain
only 0°s, whereas 1-blocks merely need to contain some 1l's. This is the
sense in which the fit is said to be "lean'" instead of "fat," Note that
:if the fit were indeed fat, so that all l-blecks were cempletely filled .
‘with 1's, then individuals in the same block would be structurally.
eguivalent in the original algebraic sense (p. 5 above).

The particular weakening of Definitien 1 which the lean fit concept.
fePresents is a highly natural ene in a wide variety of social network
‘applications. Presence of an active tie often requires a clear effort
on the part of one ¢r both individuals coencerned; whereas absence of a
tie dees not in general require work. In a tightly knit secial structure
it may be much easier to aveid maintaining a tie than te preserve an
active "maverick" tie. Moreover, any kind of data collection procedure
where reporting a tie depends on some Kind ¢f thresheld cutoff criterien
(as in forced-cheice seciometric procedures) may alse act- to create gaps
in l-blocks. In centrast, such cuteff effects will net produce the
opposite kind of errer, that of reporting existence of an active tie
-where none in fact exists. On these and similar grounds (discussed more
extensively in White, 1673, 1974b) it is unlikely that l-blocks will be

 fat, - From a purely formal standpeint, quite aside from substantive
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- issues, one weuld expect the lean-fit criterion to be relevant as a:
criterion for blusteriﬁg'many varieties of sparse matricesoz

It is cléar that blocks (in the lean-fit blockmodel sense just
defined) need not be'cliques in the standard graph-theoretic sense or

any of its many soclometric generalizations (Luce, 1956; Hubbell, 1965;

- Alba,; 1973, etc,) There is no implicatien that the members of a block

-7cbaperate'or cosrdinate with one ancther. In fact, the individuals: in a
bleck need not be connected at all to one another (see again the third
biock in Fig. ib), and in fact this absence of connection would not be at
all surprising if the members of a block were "hangers-on" to some-
M"jeading crowd" and the relation being coded was something like -
"deference" (see also the interpretation of the Bank Wiring data, p. 27
:'beldw);-'ThiS'point SthSSes very fercefully that the ‘criterion for
"lumping individuals inte the same block is a consistency idea, net a

~ conhectivity idea: bleocks are defined on the criterion that their
menbers should relate consistently to ether blocks, in the specific
sense made precise by the lesn—fit concept. In the present context, the
emphagis en congistency implies in particular that in principle the
whele social structure must be simultanecusly taken inte account in order
't test any nentrivial bleckmodel description for lean fit,

Practical development of bleockmodel analyses now centers around. the
following problems. (1) Given a blockmodel (as in Fig. lc), tegether
with raw-data (as in Fig. la), thers is the problem of enumerating all
(if any) concrete bleckings of the data (e.g., Fig. 1b) which fit the:
“blockmodel “in the lean-fit sense. (2) Given only raw data, there is the
preblem of finding some lean—-fit blockmeodel for the data which invelves
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.a reasonably small and interpretable set of blocks., Next, since what one
'is'interestéd in is. a summary description of a complex structure, one may
also (3) weaken the strict lean~fit criterion of Definition 2 and proceed
otherwise along the lines of (2). Finally, given any particular block-
" mpdel and data arranged te fit this medel, there is the problem (4) qf
assessing how convincing is the obtained fit, presumably in a statistical
:significance sense relative to some null hypothesis. Other things being

equal, it is clear that a lean-fit of a seven-block model on a population

iv of fifteen people is less likely to be impressive than is a fit of a

three-block model tec the same population. Taking the extreme case, each
population of size n is a blockmodel of itself, with n blocks, and here
* blockmodels clearly add nothing.

- In this outline of the problems to be solved, the algorithm we will
describe below should be placed under (3). Specifically, the algorithm
is a way of directly starting from raw data and obtaining a partitioning
into clusters (actually, a hierarchical clustering). These obtained .
:;eiﬁé£érs typicallf.&o.nof Bringrout sffiﬁfuééfbﬁlock structﬁfé.iﬁ £ﬁe,
 data, as for example does the blecking in Fig. ib., Nevertheless,

- extensive tests on data indicate that the results of the present

algorithm are usually close to the most informative lean—-fit blockmodels

- which have been found through trial-and-error methods (thus see below,

p-26)., From the standpoint of White's work, therefore, the present
‘algorithm may be interpreted as a search procedure for lean-fit

blockmodels as characterized in Definition 2. The relation between the

- o . present algorithm and lean~fit models will be pursued at greater length

:in. later discussion of data applications.
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To- avoid terminelegical confusion, we will cbserve the following
conventions. When a blockmedel is spcken of as "fitting" given data, -
the default interpretation is that the fit is close to a perfect lean
fitin the Definition 2 sense, but with some imperfections allowed
(impure zeroblocks). We will always speak explicitly of the strict -
lean fit criterion if the lean fit is perfect. - Centrary to a prieri-
intuitions about the likelihoed of imperfections in real social
structures, it is surprising how often true zercblocks are actually
found (see, e.g., Fig, 6).

2. The Convergence-of-Ilterated-Correlations {CONCOR) Algorithm

Consider an nxm real matrix Mbo An example ceuld be a seciomatrix
~representing network ties; other examples will be encountered later.
Treating the columns (alternatively, the rows) as separate vectors

Xos i=1,2,0.0,m {respectively i=1,2,...,n), fozm the mXm (respectively
nxn) matrix Mi whose {i,j)th entry is the standard product moment

correlation ceefficient Between‘gi and’gﬁu3 (Ml will henceforth be

referred tc as the first—correlation matrix.} Now apply the same

precedure to'Mi end ilterate, cbtaining successively matrices M2’ M3,
etc., all of which will be square matrices cf the same size as M1°

" Then the following mathematical statements appear te hoeld
generally, aside from exceptional cases of "knife-edge" character:
) M;=1%m Mi always exists; and (2) M 1is a matrix which may be blocked

in the following bipartite form:
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These two asseriions will not be investigated matematically here;&
for the present, it is sufficient that beth (1) and (2) have been
empirically verified to hold on more than eone hundred applications te-
sets and subsets of network-related data ranging in size up to 70 x. 70
(for the initial matrix Mb)o Ne exception te statement (2) has been
found in- any application tec data. In the simplest case where M is a
réingle binary matrix, representing a sociogram, the fact that the limit
matrix M _-can be blocked as indicated abo#e may be restated to say that
the iteration procedure is an algerithm which splits inte twe parts the
set of actors in the network. More general situations will also be
- enceuntered in the later applications; but the use of the algorithm is
always to produce a bipartition ef a concreté poepulation.. The algorithm
will be designated CONCOR . ("convergence~of—iterated-cerrelatiens”).

Concerning the application ef the CONCOR algorithm, the following
initial observations should be made.

. A, Counterexamples to the limit (2-BLOCK). There are a number of

obvious counterexamples to the statements (l)_and (23, 1.e., cases
where M _does not exist or cannct be blecked in a bipartite form.
However, if M@ is perturbed slightly away from such a degenerate case,
then coenvergence to the bipartite limit {2-BLOCK) will in general be
restored. This indicates that the exceptions te the statements (1) and
{2) abeve form a class of purely mathematiéal interestos Howevér9 ene
particular case of degeneracy should be neted to arise if (in the case
of iterated column correlations) some celumn of the original matrix Mb
has only 1's or only 0's (and dually for rows in the case of lterated
row correlations). Then the celumn véctoi in questien has zero
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variance, and hence the product moment correlations Invelving this columm
will be all undefined., In goclometric terms, this difficulty will occur
when some indiwviduazl is either chosen by everyocne or chosen by no one.
The former difficulty may be avoided by the technical expedient of
imposing a zero diagonal on Mb (o one is congidered te "chocse"
himself). The second problem, that of an individual whe is chosen by

ne one, is reminiscent of the degeneracies arising in multidimensienal
scaling when one or more points in the input distance matrix is very

far from all cther points (Shepard, 1962b; Arabie and Beorman, 1973;
Table V),6

Bn_ Speed of convergenceo: Approach of Mi to M ig typically rapid.

Define a cutoff criterion to be a parameter c¢< 1 such that the algorithm
is terminated as soon as a matrix Mh is reached each of whose entries

has an absolute value » ¢. The examples quoted in the applicatioms

below were for the mest part constructed with a cutoff value of ¢ = 0.999.
In all examples of section 4 except the last one, Example E {the Levine
data, where the population of cerporaticns was of size 70), the (.999
cutoff was reached in eleven eor fewer iteraticns. In the case of the
Levine corporate interlock data, a cutoff of ¢ = 0.2 was reached after
12 iterations.

"C, Blocking on rows versus colums of a sociomatrix. If the

original matrix Mb'describes a network formed by forced-choice
gociometric procedure (Bjerstedt, 1956), then the nature of the data
collection procedure introduces an a priori asymmetry inte the status of
rows and columns. Specifically, as Holland and Leinhardt have stressed

in a numberfof'papers {e.g., 1969, 1970}, forced-choice procedures have
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‘the effect of censtraining row marginals and this constraint may have
the effect of masking existing network structure. Holland and Leinhardt
deal only with triad counts, but their concern also applies to the present
situation and suggests that in such specific cases one should give
preference toc blockings based on column correlations rather than these
based on row correlations. :All sociometric and observer-reported
applications of CONCOR presented in this paper (pp. 22 £f. below) are
based on columm, rather than on row, correlations. In many cases, row
correlations have additionally been run. The results are typically
close, though not in general identical, to those obtained using column
correlations; the results of comparing row and column approaches will be
-reported elsewhere.

it-is also possible to mix rew- and columm-cerrelation approaches
in the same limiting process, as when successive iterations are
“alternately based on row and columm cerrelations (an alternation
procedure reminiscent of Mosteller row-column marginals equalization}
see algo p. 40 below).

D. . Bepetitions of the algorithm on successive subpopulations.

The procedure just described may be geparately repeated on each of the
two obtained blecks. Specificaily, one may repeat the procedure on each
¢f the two submatrices formed by taking the columms of Mb corresponding
to each of the twe blocks delineated by the previecus bipartition. A new
Ml is then formed from each submatrix and the limit M 1is obtained. This
repetition will lead tc a new bipartite split of each of the original
blecks in turn, leading to a finer overall partition with four blocks in

all, Notice.that'although-M1 is a proximity matrix, the information
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contained.in,Mi alene is ingufficient for computing finer blockings; one.
must return to Mﬁ in each case. Repeating the algorithm on each of these
finer bleocks, we may obtain bleockings teo any desiyed degree of fineness,
and thus the CONCOR algorithm leads to an algorithm for hie:archical‘;

clustering.

E. Multiple types of relation. Instead of data consisting of a

single network, assume next that one is given a network where a number

of distinct kinds of ;elations are reported. Specifically, assume that .
one starts with k n xn data-matrices, each reporting the incldence of a
particular type of tie on an underiying population of size n‘(e,_g_g.,s
"Liking," "Helping," "Antagonism," etc.). The k matrices may be
compounded into 2 singlie new matrix with nk rows and n. celumns, in which
the_individualrdata‘matrices are ''stacked" one above the other in an
arbitrary order but preserving the same column ordering fer each matrix.
(Alternatively, a Zok #zn array including each matrix and its transpose
‘may be formedn} An n xn fi;st_gofrelaticn matrig Ml may then be formed
as usual and the CONCOR algorithm apain applied as before. Note that the
procedure as described implicitly gives equal weight to each cempenent
type of tie, and in particular makes ne attempt to weight ties
differentially accerding to the frequency of their incidence ox ether
measures of comparative importance. Various natural refinements may be
developed which respond to these difficulties by incorporating differential
tie weights (compare the use of weighted Hamming metrics by Kruskal and
Hart [1966]). - Hewever, only the simple unweighted precedure just
sketched will be used in the exploratory appiications below.

The ease with which the CONCOR method may be extended to handle
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multiple types of tie is a very important feature of the approach, and
makes it a natural clustering method for many types of social network
and other social structural data. In fact, there are few substantive -
contexts where it can be convincingly argued that only one kind of
social relation is present, rather than multiple networks simultaneously
existing in a population. Many characteristic aspects of concrete social
structures in fact arise from the presence of multiple types of differ-
entiated tie (see White, 1963: Chapter 1 for examples drawn from
kinship and formal organizations). In many studies, empirical data
collection procedures eliminate all but one type of tie, or use ad hoc
aggregation procedures to reduce several distinct types of tie into a
single type prior to the main analysis. The existence of CONCOR as a
simple method which is able to handle a large number of types of tie as
easily as one type may encourage empirical investigatérs to collect and
report data on multiple distinct kinds of social networks.

" 3. Relation of the CONCOR algorithm te traditional aspects of clustering

and scaling.

Since the method of clustering introduced here is quite different
from most methods encountered in the behavioral and biolegical literature,
it is useful to relate CONCOR to the established framework of cluster
analysis. In describing CONCOR as a hierarchical clusfering algorithm,
we should first emphasize that the phrase "hierarchical clustering" is
here being carried over frem the tradition of data analysis in psychology.
There is ne implication that CONCOR is a procedure specifically designed
to.extract status orderings or other social hierarchies from social
network data, nor that such hieérarchies will in fact be obtained in the
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applications belew (contrast, for example approaches in Bernard [1973,
1974], where hierarchical structure in soclometric data is specifically
- sought and analysed).

" A, “Invariance properties. It is clear that the output from

CONCOR is not in general invariant under arbitrary monotense
transformations of Mbg considered as a matrix ef real numbers. In the
stdandard clustering literature, this absence of invariance is
consistent with the metric approach of Ward (1963) rather than with the
nenmetyric approach of Johnsen (1967). However, in the context of the
present algorithm, the question of ordinal invariance dees not have the
same significance as is in the case of other methods, since in dealing
with seciomatrices we are not viewing the input data.Mb as a distance or
similarity matrix (cf. p.l2 above, and compare Needham [1965:118] and
Hartigan [1972:124-127]). The fact that M, need not be a distance matrix
~allews us to deal directly with binary metrices which cannct serve as
direct input te commenly employed metheds of clustering based on
distance concepts.

However, from a formal standpoint, it is worth noting that the

CONCOR algorithm does give results invarisnt under any transformation

. = { ¢ X
of Mﬁ [mijl which takes mij te a mij+,ﬁ

B. The position of CONCOR in taxoncmies of data and data amalysis.
In terms of Shepard's (1972:27-28) taxonomy for types of data and
methods of analysis, we are of course dealing with profile data as soomn
as Mi;“the first-correlation matzix, is computed. However, the fact

that CONCOR 4s in many ways omivercus with respect to,Mo (an n x m
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matrix) allows the algorithm to fall under several traditional headings
simultanecusly.

For example, the fact that Mb need not be a square matrix allows the
rows to correspond to entities completely different from the columns.
Thus, in particular, we can deal with data which are apprepriate to .
analysis by multidimensienal unfolding (see, for example, the Levine
data in Section 4E below). The pessibility of clustering beth the rows
and the celumns of & non-square MO makes this particular use of CONCOR
quite similar in emphasis to Hartigan's (1972) methed of "direct .
clustering" (see also MacRae, 1960).

In the useful terminolegy of Carrell and Chang (1970), the
~application' of CONCOR to nultipie types ef relation censtitutes 2-way -
scaling, since the result ¢f forming Mi on the stacked raw matrices is.

. to study "subjects by subjects." We began with g 3-way data structure
(the k distinct relations constituting the third level), but by stacking
we reduced the problem te 2 2-way analysis. This reduction in the
complexity of the design is similar in intent to many applications. of
the more'familiar 2-way procedures where one sums over conditions te
obtain a group matriz (er sums squares, if one thinks that the raw -
data are actually distances [Horan, 1969)). An example of this standard
approach is given by Shepard’s (1972) reduction of the Miller-Nicely
(1955) 3~way data on cenfusions-between consenant phenemes, in crder to
convert the data intec a ferm where they may be entered as an input to

MDSCAL, which is inherently a 2-way procedure.

C. Relatien ro alternative methods of hierarchical clustering.

We will not attempt in this paper te review or classify the many ..
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clustering algorithms presently avaeilable; the interested_:eader should
consult Laﬁce and Williame (19672, b} and Jardine agd_Sibson_(lQlea
However, we do wish te comment on the p@sitﬁon_gﬁ_CQNCOR with respect te
some of the more well-known aspects of clustering procedures.

To begin with, ths present algerithm is obviously "divisiveg" in
contrast to the mere commonly used "agglomerative” procedures
{terminology of Lance and Williams, 1967a) which begin forming clusters_
by jeining together single stimuli and then later merging clusters to
obtain a.tree,structurey

Reflecting.a commenly adepted standpoint, Jardine and Sibson {1971)
suggest a basis for classifying clusteriag p:ocedures, which would
distinguish ameng pyecedures according te where they fall on a
continuvum whose extremes are respectively the cennectedness and diameter
methods. of Johnson (1967) (see below, p. 3L 3. The question maturally
arises: where does CONCOR fall along such sn axis?

We investigate this questicn in an Appendixz.  Specifically, the
analysis there given ewploys one of the Boorman-Olivier tree metrics to
quantify the similarity betwesen CONCOR and Johnsan‘s HICLUS selutions
for twe of the concrete data sets analyzed in Section 4 (the Bank
Wiring Group data and the Sampson monastery data). The evidence devived
from this analysis suggests ne preferred p@sitidu for CONCOR, and the
Jardine-5ibson classification hence appears essentially drrelevant teo
the present approach,

| Turning te a different set of problems, a commen feature.of_many
otherwise disparate clustering procedures is that they perform

~ inadequately or unsatisfactorily when confronted with certain practical
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problems arising frequentiy in data analysis. Two such situations arise
most frequently;u These situations concern: (1) treatment ¢f ties and
(2) presence of an excessive number of levels for interpretation in the
(output) hierarchical structure.

The presendé of ties constitutes a real problem for clustering
procedures which are based on a sequential pattern of merging/splitting.
As Hubert (1973:48) observes, it is usually assumed that ties will not
occﬁrg If they do occur, some arbitrary decision must be made. In
sharp conktrast, ties in the raw data matrix M0 de not in any way
constitute a distinctive case for the CCNCOR algorithm, which appears to
deal very effectively with binary matrices--a rather extreme case of
tie~-bound data (see examples below in Section 4). The obvious reason -
is the fact that CONCOR passes immediately to the first correlation
matrix Mi, and ties in Mb will not in general be inherited as ties
in Mla

The experienced user of hierarchical clustering methods is well
aware of the differences between the conputer cufput from such methods
and the published figures that subsequently appear. The chief
discrepancy arises from the fact that most hisrarchical metheds yield
n levels (where n is the number of stimuli) in the tree structure--far
too many for either interpretability or ease of graphic presentation.
The user is hence confronted with the task of cocllapsing over certain
levels. The decision as te which lewels are to be ignered is usuvally a
rather suﬁjective one, as there are no well defined criteria available
for most hierarchical cluétering methods. Of course, for situations in

which a fine level of partiticning is ultimately or locally required,
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CONCOR is no different from the other hierarchical methods with respect
te this particular problem: the user can continue applying CONCOR on a

given matrix te reach any desired level of fineness.

D, . What the CONCOR algeorithm maximizes. Unlike some other

“hierarchical clustering schemes (e.g., Ward, 1963; Edwards and Cavalli-

Sforza,'l963; 1965, Hubert, 19733, the CONCOR algorithm is not caét in .

the form.df a solution of some maximum or minimum problem. Howéver,

there is numerical evidence that the performance is clese to that of an
algorithm designed t¢ take the first-cerrelation matrix Mi and to split

the underlying pepulation into two groups so as te maximize mean

within-group carrelationse For example, when Ml for the Sampson data (Fig. 8) is
rearranged In accordance with the two-block CONCOR model,'Mi =(g g) .

the mean correlation with stbmatrices A and D is .232 (exclu&ing the

diagonal entries of Ml’ which are 1 by definition) snd the mean correlation

in submatrices B and € is -.098. This contrast is marginally sharper

" than for White's {in press) two-bleck trial-and-erzor model on the same

data (which lesds to the analogous correlations .185 and -.087
respectively) .,

4, Applicaticns to the Anslvsis of Social Networks

We discuss five spplications to sociometric, ocbserver-reported,
participation, and interlocking-directorate data.

A. Newgomb's Fraternity

Theodore Newcomb (1561: see alsc Nordlie, 1958) created a fraternity
composed of seventeen mutually unacquaintéd undergraduate transfer
students. In rveturn for free room and board, .each student supplied data
over a four-month peried, including a full sociometric rank-crdering
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each week, listing the sixteen other students according te his "favorable-
ness of feeling" toward each. The experiment was repeated with different
subjects in two successive ysars.

4 small part of Newcomb's data (rankings for Year 2, Week 15) will
serve as a first illustration of a two-bleck model preduced by the CONCOR
algorithm. Week 15 is the final week of the Year 2 experiment, and from
Joocking at the Year 2 data as a whole it is clear that the preference__
rankings have reached what is reughly an equilibrium configuration by
about Week 4 or 5 and have remained there since (see alse Part II, which
reanalyzes the full Year 2 data using INDSCAL.)

Specifically, form two binary matrices from the original rank—
ordered data for the given week. The first matrix 7 ("'mest favorable
feeling'") is taken te centain a "1" for each of the top two choices of
each student, with 0's elsewhere; the secend matrix a ("least favorable
feeling'") is taken tc contain a "1" for the bottom three choices of each
student, with 0's elsewhere. In a simple way, these two matrices extract
two extremes of sentiment out of the raw rank-orderings. The particular
decision to take the top two and bottom three choices follews White
(1974b); frowm exploring numerecus alternatives it can be asserted that the
blocking outcome will be robust over alternative ways of converting the
data to binary form. In particular, the same analysis has been run
taking top three and bottom three choices, with no essential difference
- in results.

Given the binary matrices 7 and @ , a 34 x 17 matrix M, = ()
was now foermed by stackigg lover a. The 17 x 17 first-cerrelation

matrix Mi was now computed from the colums of M

0° and the CONCOR
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algorithm was applied to obtain M . The bipartite blocking implied by
M led te the blocks (1923436,798,9,11912§13,1?j and (395,10,14915,16)
(focllowing Nordlie's [1958] numbering of subjects),

This blocking {= identical to that obtalined by White through
trigl-and-errpr and following (but net adhering strictly to) the lean-fit
criterien (White, 1974b)58

Figure 2 now illuatrates-the sbtained blocking on the present top-

and bottem-choice matrices I and g . It is clear that the pattern is

close to a lean fit to the two-block two-relation bieckmﬂdel H = (i 8 Ve
T = (g % },° though perfect lean fit is ruled out by a scattering of 1's

in the low-density bleocksg, As a first Way of developing a gquantitative
appreach to bl&ckmodel fit, beneath each bilocked matrix in Fig. 2 is a
table pf the densities in each of the four blecks (i.e., the number of
ties divided by the number of entries in the block and excluding cells
.Which fall en the main diagonal). Note that there iz a clear bimodality
.in density as between the low-density blecks (denéities-ﬂ 0, .02, .03,
-03) and the high-density blocks (densities = .17, .20, .47, -50j.
The blockmodel structure thue revealed is interpretable in a very

simple way. One of the blocks contains persom (1) none of whom send

top choices goutside the bleock, and (Zﬁ'who_receive virtually all the top
choices of the second block, and (3 who send virtually all their bottom
choices te the second-block individwals., At the same time, the second
block not only receives virtually &ll bottom choices frem the other
block, but alsc absorbs virtually all the bottom cheices of its own
members. This structure suggesis 2 situation where there is a single,
dominant central clique and a second population of "hangers—on.'
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Fig. 2. Twoe-block model for Newcomb fraternity data. Year 2, Week 15,

rank-order data cenverted to binary ferm by taking top twoe and

bottom three choices (see text).

1 11 11 1
2 1 1 “111
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16 1 ' I

.20 6 .02 47

<17 03] | .05 .50 .

243




B. The Bank Wiring Reom

The second application of the algerithm will concern an example of
Homans (1950). This example is drawn from a classic study (Reethlisberger
and Dickson, 193%) of a Western Electric production team transferred to

a special room which an eobserver shared for six months. Rather than

asking the men themselves for & statement of their relationships (as in

the scciometric studies reviewed here), the original researchers

inferred the incidence of six types ¢f tie among the feurteen men (see

Homans [1950:64~72] for a detailed descripticn cf each type of tie). The

ties have mo time referent and are thought of as stable.

The specific types of tie reported are as follows (see also Fig. 6

for the incidence of all ties except the Trading onej: "Liking;"

- "Playing games with" (described as "Games" in Fig. 6; see Homans [1950:

681): "Antagonism;" "Helping;" "Arguments sbout Windews with" (see
Homans [1950:71]); and "Trading Jebs with." For the most part, these
relational descriptions should be self-explanatory. "Liking,"

"Antagonism," snd "Arguments sbout Windows” were all coded as

symmetric ties, "Plsying games with" was generically a positive

sentiment tie, while "Arguments" was a particular kind of negative

sentiment tie (Reethlisberger and Dicksen, 1939:502-5304). FEach type of

tie may be represented by a 14 x 14 matrix reperting its incidence on

"~ the fourteen-man populatien.

" Our analysis excludes the highly specialized {and low-incidence)

type of tie, "Trading Jobs," as we wish to achieve comparability eof our

results with White's seven-block modell0 formed on the remaining five
relations. A 70 x 14 matrix Mb was formed by vertically "stacking"
25




the remaining five 14 x 14 matrices, taking care to preserve the ordering
of columns.  On the first iteration, a 14 x 14 column-correlation matrix
Mi was then formed (Fig. 3). Applying CONCOR, M yielded the bipartition:
(W1,w2,W3,51,W4,W5,11,13), (W6,52,W7,W8,W9,S4)., (This notation follows
Homans' conventien of numbering men within their job classification:

W for wiremen, S for soldermen, I fer inspectors.)

In erder to obtain a finer blocking, the abeve process was
repeated for each of these blocks in turn. (E.g., the next step was. to
form a 70 x 8 matrix composed of the columns. correspending te W1,W2,W3,
S1,W4,W5,I1, and I3 ef Mb and to apply CONCOR with this new submatrix
as MQ.)- Eventually, nine blocks were found in this manner. In.
accordance with one standard way of representing hierarchical clusterings,
a natural way of displaying the results of this repeated process is by a
binary tree (Fig. 4). Each node in this tree represents a cluster
(block) centaining all men pesitioned below it.

Figure 5 indicates the similarity between Homans' analysis (which
agrees in essentials with that of Roethlisberger and Dickson),the seven-
bleck model in White (1974b), and our own findings using the present
algorithm. Our twe-block model essentially identifies Homans' two
cliques; though also mixing in individuals whom Homans considers as
outsiders. Our four-bleck model very nicely distinguishes the Homans

cliques (Blocks 1 and 4) frem their marginal members and outsiders
(Blocks 2 and 3). This four-bleock model and White's seven-block model
are compatible, i.e.; the latter is a partition which is a refinement‘of
the former,
‘Now return to the five data-matrices and impose our fourrblock .
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Fig. 3. First-correlation matrix leuzﬁ@d ou the Bank Wirding data by
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Fig. 5. - Cemparisen of the CONCOR results reported im Fig. 4 with the
trial-and-error blockmedel analysis of White (1974b) and the

c-discussion in Homans. {1956,

{CONGOR alporithm) White's

‘ Homans -

Individual's agssigg- 2-bleck 4-block 9-bleck - 7-block medel
identification ment - model medel ‘model  (White, 1974b)
Wi . A o i 1 1 2
W3 . A _ 1 1 1 1
W & 1 1 2 1
st A 1 1 z 1
S A 1 1 3 o 2
WZ. . . * 1 2 4 | | 3
- ,- N 5 g R 5
wé ' B 2 4 8 S 4
W B 2 k4 | 8 ' 4

sS4 B ' 2 T4 -9 ) 5
o W6“ ' . dede . 5 C 3 ' 6 - : 6

LE _ Fedk 1 | 2 & 3

52 dedes 2 3 6 ‘ | 6

13 o ERe i 2 5 7

Key: Blocks are‘named by letter (Homans) or number (others).

+ Based on Roethlisberger and Dicksen (1939), pp. 508~510.
* Man W2 was oriented to but cutside of Clique A and "had little to do
with it; he entered little into. conversation" (Hemans, 1%50: 70).
*% Man W6 was oriented to Cligue B but "in many ways was an cutsider
even in [this] greoup" (Hemane, 195G: 71). ,
#%% In Homans' judgment, men W5, SZ, and I3 were net members of either
. elique. . : :
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model (Fig. 6). Below each data-matrix is placed a 4 x 4 matrix
indicating the density of ties in the corresponding submatrices of data.
As in the Wewcomb case, this is a first approach to quantitative treatment
of fatness of fit. Note the high frequency of zeroblocks (summing across
' relatiﬁns, there are 5 x 16 = 80 blocks and almost half of these blocks
[37] are zeroblocks). This occurrence suppoerts the general observation

at the end of Section 1, that even witheut explicitly trying teo isolate
zeroblocks CONCOR eften has this effect when used on networks of
basically low tie density.

The blocked "Liking" and "Games" matrices clearly delineate two
"eliques within which there is positive sentiment. (As mentieoned above,
Blocks 1 and 4 are identical to the central.membership of Hoemans'

cliques A and B, respectively.) The "Liking" matrix would yield a'.. .-

" three-bleck blockmodel ( é g g) according to the strict lean-fit
criterion were it not forotgelpresence of a single "discrepant" tie (S1
and W7 choose each other). As White (1974b) states, ''this one tie, which
abrogates the possibility of [an algebraic¢] role model based on Homans'
cliques, is ne accident; it is a significant part of the social
structure, a tie betwsen twe leaders." (Compare the discussion of
"bridges" in Granovetter [1973].)

The '"Games" relation (see asgain Fig. 6) further suggests a status
ordering as between central and marginal members of each clique: enly
.central members of a clique play games together, while the marginal
members of a clique ("hangers-on") play games enly with the central
members, not with each other. The appropriate submatrix blockmedel

{taking either the first two or the last two blocks) is then of the form
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Fig. 6. TFive Bank Wiring Group relations blocked into four blocks under
CONCOR algorithm. Tie demsities for blocks reported bemeath

each matrix.
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Fig., 6. {(Cont.)
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0.05 0 0.12 0.42 0.25 0.  0.50 0.83.

27b



E =(,i g) » where the "0" indicates absence of ties among the hangers-on
population. (See also White and Breiger, 1974 for more extensive
discussion in the context of other two-block models.) There is enly one
case of game-playing between cliques, and this involves a marginal-
member of one of the cliques.

The "Antagonism' relaticn is particularly revealing, and provides
a substantial amount of additional information supporting a status line -
of interpretation. No centfal member of either clique is antagonistic
toward either his féllow‘éliqﬁe members or toward his opposite numbers
(i.e., the four corner blocks are zercblocks). The complete absence of
antagonism between the two central bliques is very much in contrast te
the naive predictiéns of classical balance theory (Abelscen and Resenberg,
1958) or aﬁy of a number of substantially modified and weakened versions

of this theory (e.g., Flament, 1963; Newcomb, 1968). The central clique

members are antagenistic oenly toward marginal members.

Nete alsc that there 13 mere antagonism between the twe hangers—on'.
groups (3 symmetric ties):than within either of the hangers—on groups
(1 symmetric tie). However, the hangers-on groups are both quite small
and this last point is correspondingly weak.

_ Still considering the Antagonism matrix, onme next cbserves that there
is aIStrang‘asymmetry as between the two central cligues: the members of
clique A direct antagonism only toward their own hangers-on, ignoring the
hangers-on of clique B, whereas the members of clique B likewise direct
antagenism toward the hangers-on of clique A and almost completely
igndre their own hangers-on (there is enly one exception, in the
antagonism between W6 and W7; on this particulaf'relations see Homans
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[1950:77]). Moreover, there is a substantially higher incidence_of
antagonism between the central members of_clique B and thg hangers—oﬁ

of clique A than between these hangers-on and the central members of |
clique A (contrast the [1, 2] and {4, 2] cells of the blecked antagonism
matrix in Fig, 6).

Summarizing this evidence, it is pessible to interpret the ob.served
asymmetries between the two cliques as evidence of the "dominant"
position of clique A. This dominance is clear from the observer reports,
and Homans in particular comments as follows (1950:71): "Each clique had
its ovn games and activities, noticeably different frem these ef the
other. group, and clique A felt that its activities were superior to these
of clique B." (See also Roethlisberger and Dickson, 1939:510), 1In
-develeoping this differential status interpretation, it is unfortunate.
:tha; the reported antagenism relation is symmetric, since it is
consequently impsssible te differentiate negative sentiment_ties as
between szender and receiver. |

In this é@nnections the "Helping on the Job" relation assumes a
poﬁentially important place, since it is the only relation in the data
which is net fully symmetricull Again, some status effects are
indicated. The hangers-on to clique A did not help each other but
helped the central members cof clique A tc a substantial exten; which was
. net reciprocated. A similar asymmetry appears with respect to the
mﬁrginal members of clique B. Observe that there are also instances
where central members of one clique help central members of the opposite
clique. However, these instances are toe few and the density:of thg
Helping matrix is too low to draw inferences about the_:elatiyg_status
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position pf'the two central cliques.

Finally, there is the Windows matrix, which describes_the incidence
of controversies abeut windows in the work room——specifically, whether
they should remzin epen er shut. It is apparent that this was an
activity which tended to ceanteér primarily around clique B. Homans (1950:
71) also describes several other activities which tend to be clique-
specific. The present case édmits & very simple interpretation if it is
realized that the work rocom had assigned places fqr sach of the men, and
most of the members of clique B were located cleser tc the windoews (see
Fig. 2 in Homans [1950:571).

The detailed ahalysis jﬁst concluded makes clear that the central
importance of'bléckmodels is the way in which these models may be used
to clarify relational structure from raw netwerk data. This relational
structure gees very much beyonid mere partitiening er hierarchical
clustering of the ugderlying populatien, such as is produced by CONCOR
or any other hierarchical clustering procedure. However, it is ebviously
of interest to assess the performance of the CONCOR algorithm in producing
blockings which may subsequently be used as a basis for detailed
relational analysis. Te this end, we now give a detailed comparative
digeussion of_the relative performance c¢f CONCOR and Jeohnson's well-known
(1967) HICLUS procedures on the Bank Wiring data.

The HICLUS autput, Fig. 7 shows the results ¢f analyzing the first-
correlation matrix Mi in Fig. 3 by both Jchnson's connectedness and
diameter methedsulz Recall that the diameter methoed substitutes the
maximum distance inte the eriginal (proximity) matrix when a new cluster
(i,3) is formed, i.e.,
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Fig. 7.

Hierarchical clustering of first-correlation matrix Ml,_ derived
from Bank Wiring room group data, using HICLUS metheds.of
Johnson (1967). The clusterings are reported in standard
HICLUS format. There is no parallel in CONCOR to the cluster

- values oy produced by the HICLUS procedures.
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0.583 XXX 6 6 o o 6 s o o o o o a
- 0.581 KZ 0 o 6 0 5 ¢« XX o & o w
0,564 XXX XXX . o o o XXX 6 o & o
0,458 XL XXX XXX o o XXX o o o o
0.453 XXX XXX XXX . XXKXX « o o o
0.384 XXX XXX XXX . EXXXX XX . .
0.361 XXX XXX XXX . XXXXX XXX XXX
0,340 XXXXXXX XXX . XXXXX XXX XXX
0. 300 XXXXXXX XX . OXEXXXX XXX
0.272 XXXXXXK XAXEX IXXAXAAXX XXX
-0.036 PN GS0.0.0:0.0:000.40 0.0.0:0.0.05.0.05.9.0.4
-0.152 PG E005:00.00.0.4 6:0.9.0.0.0.0.05.0.0.0 .00
-0.258 J SO SOOI EE9.9.0.09.0.00:0:6:¢
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dli,311,k) = max{d(i;k},d{(j;k}1,
whereas the connectedness method substitutes the minimum distance,

dli,ilk) = minld{i,k),d(i, k)1,

At the coarsest (two cluster)}level; the Johnson connectedness method
produces the two clusters (W6, W7, WB,W9,84), (W1 ,W3,81.,W4,I1,82,W2,W5,13).
The next splitting of the first cluster leads to {W6,W7}, (W8,W9,54), and

‘one obtains similarly (WI1;W3,81,W4,I1), (S2,W2.W5,I3) for the 'second cluster
(order of individuals follows output in Fig. 7 {(a}). The two—cluster
split is similar to the two-block CONCOR cutput, except that S2 in the
CONCOR output is placed with (W6,W7,W8,W%,$4) rather than with the other
cluster (W1,W3,81, ....,I3). This difference dees not clash in any
major way with the substantive judgment of Homans that man 52 was not-a
member of either clique. At the four-bleock level, a more significant
difference is that the Johnson methoed places.ﬁﬁ with W7, hence cutting
acress the boundary of the central clique B membership (W7 is assigned:
"by Homans te cligue B, whereas W6 is not).

Similarly the Johnson diameter method leads te the two-cluster
split (Wi, W3,51 W4 ,WZ,W5,11), (W?,W8,W9,W6,54,52,13), which may then be
broken inte four clusters (WI,W3,51,W4), (W2,W5,I1), W7,W8,W9,W6,54),
(82,13). The two-cluster diameter solution is again similar to the
two-block CONCOR results, although the inspecter I3 is now placed with-
(W7,W8,W9,W6,54,82) . The four cluster solutien deviates in an
important way from the CONCOR results by placing man Il in a different
cluster from (Wi,W3,51,W4), hence breaking up the central clique A
whereas CONCOR dees net. 1In this respect, the performance of the

diameter method is clearly inferior to CONCOR. As in the case of the
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" connectedness method; the diameter method also places W6 with
(W7,W8,W9,84} at the four cluster level, hence again imperfectly
discriminating clique B at this level,

In summary, altheugh the performance of the three algerithms is

.quite similar, CONCOR is the only one of the algerithms to recover the

j R@ethlisbergernnicksonwﬁomaﬁs.cliques in a perfect way. The Appendix
.develaps a more detailed quantitative comparison among the three methods,
using the tree metrics approach of Boorman and Olivier (1973).

C. Sampsen's Monastery

5. Fo_éampson (1969) has provided a meticulous account of seocial
felations in an isclated contemporary American monastery., Turbulence
- was emerging inside American Cathclicism in the late 1960's, and there
was a major conflict in this particular menastery toward the end of.
Sampsen's twelve-month study. The upshot ¢f this conflict was a mass
departure of the members, with the result that Sampson’s data is of
special interest for what light it may shed on the structure of a social
group abeout te disintegrate fer internal reasons.

The wide wariety of cbzervational, interview, and experimental
.informatien which Sampson developed on the monastery's social structure
included the formulation of sociometric guestions en four specific
clasges of relation: Affect, Esteem, Influence, and Sanctioning.
Respendents were te give their first, second, and third choices, first
" on-the pogitive side (e.g., "List in order these three brothers whom you .
most esteemed"), then on the negative side (e.g., "List in order those
three brothers whom you esteemed least™}. Responses for eighteen
ﬁembers (not including senicr monks) are presented for five time periods;
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it should; however, be stressed that the data were obtained after the
breakup had occurred, and hence are subject te the kinds of errors which

make recall data often unrelisble. The present analysis is confined to

Sampson's fourth pericd, just befere the major cenflict and after a new
cohort had initially settied in.

Sampson presents his Time Four datz in four tablesszone for each

class of relations, in which negative choices are represented by negative

integers according to the cheoice level. (Thus, for example, a choicé of

"like most strongly' appears as +3 in the Affect table, while a choice

of "most strongly dislike" gppears as -3 in the same table.)

White (1374b) formulatéélbl@akmodels ot cheices which are made;
binary by using the top twe and bottom twe choices for each man. Tﬁis
leads to eight binary matriceinn 2119 which are then blecked. We ﬁave
instead applied the CONCOR algorithm directly to Samps@ﬁﬁé reported:
data invelving weighted chéiﬁesn A 72 x 18 matrix MO was formed by'
vertically "stacking" the Affact;_Estaems_Influances and Sancﬁioning
" matrices, taking care as uswal to preserve the arderingiof c@lummsa{

Starting with the first-ceorrelatien matrix M. shown in Fig. 8, CONCOR

1
then produced a tweo-bleck particiening (see Fig, 9) in which ene block
includes all individuals whom Sampson identifies .as the "Loyal
Opposition" faction (persons numbered 4 6, 11, 5, and 9 in Fig. 8) and,
in addition, three members Whom SamPSQn terms "°nterstitlal"—-1 Sy
brothers not clearly belonging te any group-(persons numbered 8, 10,

| and 13}, | |

The CONCOR preocedure was theﬁ repéat@& an.thé.submatrix tormed by

taking coelumns of Mﬁ corresponding to the remaining bleck (i.e., cclumms

33



BEE

Fig. 8. First-correlation matrix Ml.formed on the.Sampson monastery data (details in text).

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1.0
.23 1.0
.02 ~.07 1.0
-.33  -.3% -.06 1.0
-.29 -4 =10 .15 1.0
-.08 -.17 -.23 .41 -.07 1.0
.12 24 =14 =42 -0l .13 1.0
-.04  -.28 -,37 .25 .24 .35 ~.09 1.0
-19 =21 -5 L4 .26 .15 =40 .02 1.0
-.15  -.3% =19 ,05 .00 .18 ~.02 .21 .00 1.0
-.35 -.48  ,06 .45 .18 ,18 ~,17 -.01 .10 .43 1.0
.13 J19 . -26 -.25 =19 .04 .00 .04 =17 =17 =25 1.0
-.06 -.33 .15 .02 .09 =-.23 -.09 -.05 .04 .00 .04 -.24 1.0 _
.10 31 =17 =17 -.06- =13 =-.03 .02 -.06& -.33 -39 .19 -.21 1.0
.26 .38 -.16 -.41 =17 .02 .23 -2 -4 .00 -.33 .17 =~-.26 -.01 = 1.0
-.12 .31 -,18 =-.24 =-.,09 -,28 -.02 -,16 ~-.26 .08 ~,18 .17 .10 -.03 .20 1.0
A1 =14 .31 -.43 -0 =24 . ,12 -,26 =17 -,15 ~-,22 .05 .19 .11 -.18 =~,10 = 1.0
07 -5 25 -.37 -.5 .04 -.27 =07 .12 =09 -.11 .20 -.01 .5 1.0

_.'05

.08

-.06




L2, 1204, o '.
15 | T ‘ 4-6,§ - ‘KJ, “
4‘/’,‘\\\ - ' fe("\\* ' 1//’5\\‘
1,71 215 1214 [ 16 | 46! | 8B

Fig. 9. Hierarchical clustéring representation of répéated

application of the CONCOR algorithm on Saﬁpson‘s data. "
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- 1,2,3,7,12,14,15,16,17,18) . Convergence of this 72 x 10 matrix resulted
| in the further partitioning (1,2,7,12,14,15,16) (3,17,18). The first
© group just enumerated corresponds identically with the "Young Turk"
faction which Sampson identifies through a combination of many analytical
techniques. The second group (3,17,18) ceincides with the "Outcast"
-group which Sampsen alse identified. Together with the individual
numbered 2, one of tﬁe.leaders of the Young Tﬁrk factien, tﬁe Qutcast
z group was the group whese expulsion from the monastery triggeréd 2 mass
resignation which soon followed.

' anthe basis of an intuitive search for lean fit bloékmedels, White
- _(1,9'7413; Table 10) has formulated a five-block model of the monastery's
social structure, as well as a coarser three-block version formed froﬁ_
" these five.blwcksu White's thrée—block model may be formally obtained
by applying CONCOR to the stacked version ¢f the eight raw Sampson

matrices distinguishing "mest" from "least,"

rather than the collapsgd_
version of four stacked matrices on which the present analysis is based..
'2White‘s three-block version and curs (just déscribed) are identical with
the excepticn of the individual numbered_lB: White places him among the
"Outcasts" and we place him with the "Leyal Opposition." Significantly,
 Sampson 1ab§18 the_individual in question as one of the three
"interstitial" members of the menastery, implying that his structural
position was ambigucus (see also p. 45 below).

The discussion thus far suggests excellent comparability of our
- results both with Sampson'’s own analysis and with White's three-block
V_madelg In order to explore the results further; we now reﬁurn, as in the

Bank Wiring analysis, to the original relatienal data.
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In Fig. 10 we pregent a summary description of the twe kinds of -
affect relation with which Sampson deals. The matrices on the left of
Fig. 10 consist of the Boolesn union of Sampson’s (positive) Affect,
Esteem, Influence, and Sanctioning relations,  The matrices on the right
of Fig. 10 consist of the Boolean unicn of Sampsen’s Dislike, Disesteem,
Negative Influence, and Negative Sanctien reléti@nsc In obtaining the
Eoclean matrices frem which these unioneg are formed, the tep twe and
bottom two éh@ices {respectively} are utilized.

The first row of matrices in Fig, 10 displays the Positive and
Negative Affect relati@ns in their unpermuted row-celumn order. The
second réw of Fig. 10 displays these same matrices permuted inte a form
compatible with the three-block medel obtained abeve: using Sampson's
labels, these blocks correspend to the Loyal Opp@sitiom + Waverers
{persons numbered 496?8910911»599913)9 the Young Turks (1,2,7,15,12,

14,16}, and the Cutcasts (3,17,18). The third row ¢f Fig. 10 indicates

dengities of entries within the blecks of these last twe matrices.

Examination of the third celumn of the blecked matrices in the

second row of Fig. 10 strongly suggests why the Cutcasts were so named:

- they receive a disproportionate share of the negative ties from

individuals in other blocks, and virtually ne positive ties.

‘Seen as a whole, the pattern evinced by Fig, 10 may be interpreted
aé an approximatien to the seciometric "clustering' phenemenon discussed
by Davis (1968), i.2., presence of "two or more subsets such that each
pesitive‘line joins two peints of the same subset and each negative line
joins points frow different subsets.”" Specifically, examination of the
tie densities ir the blocked Sampsen data shews that most of the
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Figure 10.

Summary descriptien of the Sampson data, showing unpermuted
and blocked fcrms, and alse block densities.

Positive Affect

Negative Affect

1 1T 1 11 (11 1111
2 I ™ T S R S
3 T 11 11T —
& T i~ 1 - T 1
5 1 1 _ 11
6 IR St T 1
7 N 1 Tl T
(a) 8 1711 i i1 T 1 7111
Unpermuted 9 1T T 1T T "1 11
data 10 —--l ———————————————————————————————
o 11 11 inm T 1T T 11
12 iz 11
13 111 1 i 11
we I o1 1. 111
15 1 11 S T
16 11T T 117 i 11
17 N 1 111
18 I T 1111 T
4 11 T 11 -1
6 I 11 T T T m
8 SR A R T1 Tl
10 17 1| T (Loyal
) 11 11 il N 11 "HI1 opposition)
' 5 17 7% 11
Blocked data 9 11 TTTHITY ‘_“ - - 111
under a 13 I A I A | 1 1 11
permutation 1 _ 1111 inu 11 11 T 1
derived from 2 - _::_: _:_l_:_-_ 11T T
i Fig. 8 7 - I 1 111 | I (Young
' 5 1 11 1. T RT Turks)
12 L1 - 1)1
14 R % ! _ 111 d T T
16 R Rk - 1 11
3 '“‘““““:fiﬁ?“‘“’=“if' 1T T T__
17 L 1 i1l {(Outcasts)
18 1§ 11111 -
(c) 0,375 0.0893 | 0.0417} [0.0357 | 0.161 0.625
0.0357 0.429 0.0476! ]0.786 0,0714 0.429
0.0417 0.0952 | 0.833 0.417 0.0476 0
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positive affect ties are cencentrated within blecks and meost of the
negative affect ties occur between blocks. It should be emphasized that
this clusterability pattern is specific to the present data and does not
necessarily generalize: just as blocks need not be cliques (see Section
1 above), so alsc blocks may-~but need not—-form clusters or approximate
clusters in the above sense ef Davis. As an illustration, tﬁrn back to
the "Games" matrix in the Bank Wiring data (Fig. 6 above). Here the
presence of numercus ties between the obtained blecks wvislates the Davis
condition if blocks are to be understoed as clusters in his sense. .At
the same time, however, the between-block positive ties are clearly-
interpretable in this case: they indicate the bonds between "hangers-on"
and central cligue membership.

Note that even theugh the Fig. 10.b1®cked matrices contain cnly one
zeroblock, there is s clearly defined set of blocks which are close te
being zeioblocks because of very low tie density. This judgment is
borne out‘by a clear bimodality in the frequency histogram of block
densities (Fig. 11}.

Examining the pattern of bleck densities in more detail, it appears
that the highest within-bleck density eon pesitive sentiment is achieved
within the Outcasts {.833, as opposed te .375 and .429 fer Leyal
Oppesition and Ybung Turks respectively). Of the three groups, the
small Gutcast group hence approaches most neariy te the definition of a
clique in classical socciometry. Note alse that with respect to positive
sentiment the Young Turks fall into twe clear groups, (1,2,7,15) and
{(12,14,16), with the (12,14,16) subset distinguished by the absence of

direct positive sentiment ties among its members (zeroblock on main
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. Number of Blocks o

Fig. 11.

10 20 30 40 50 60 70 80 90
Density ( Percent )

Frequency histogram ¢f within-block densities in the

three-block Sampson model of Fig. 10 {see Fig. 10c¢).
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diagonal in Fig. 10(b)} pesitive affect matrix, This further division

is reproduced by CONCOR (see again Fig. 9). The blecked negative
sentiment matrix in Fig. 11{(b) again reveals the Outcasts as a cohesive
group, receiving a high incidence of negative sentiment from the other
two groups (the [1,3] and {2,3] cells in the bleocked negative matrix
have densities .625 and .429 respectively, which are the twe highest
density cells in this matrix. Note that there is a virtual absence of
negative sentiment directed from the Outcasts teo the Young Turks (enly
one entry), which is in c@ﬁtrast te the quite high incidence of
negative septiment direéted from Outcasts to the Loyal Opposition. This
observation is consistent with the prevailing factional politics, since
the Outcastsﬂﬁéfé among those later eXpelléd whereas the Leyal Oppesition
formed the core of these remaining through zll the subsequent
resignations. Finally, note that there is a considerably higher
incidence of negative sentiment ties directed by the Young Turks to the
Loyval Opposition ﬁhan vice versa([2,1] cell has demnsity .286, while
[1,2] cell has density only .161}.

Finally, Fig. 12 shows the output of the Johnsen connectedness and
diameter methods on the Mi Sampson matrix af Fig. 8. Beth methods
basically reccver the three-way split inte Loyal Gpposition, Young Turks,
and Outcasts, but b@th-diﬁfer from CONCOR in Fig. 9 in placing the
interstitial ﬁan 13 ameng the Outcasts. The diameter method alse
reveals the partitien of the Young Turks earlier indicated, which splits
them into the two subsets (L,7,2,15) and (12,14,16); the connectedness
method doeé.not.repr@duce this precise split.

Additional numerical cemparison eof the three methods on the present
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Fig. 12, Application of Johneon (1967) HICLUS metheds

correlation matrix Mi for Sampscn data.

(a}

Similarity
value

0,556
0.452
0.440

 0.432

0,411
0.383
0.352

- 0,313
0.308
0.307
0.264
0.236
0.204

" 0.1983

0,120

0.117

Similarity
value

0.556
0.452
0.383
0.352
- 0.264
0.247
0.234
0.185
G.178
G.154
G.125
0,103
-0.031
_05072
-0.118
-0.328
~0.562
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data is contained in the Appendizx.

D. Social Participation in '"0ld Cigy"

As part of theiy classic Deep South study, Davis, Gardner and
Gardner (i941:l46—151) present research on the.seéial participation of
eighteen woﬁen-at fourteen social events (sﬁch as a card party, a church
supper, and so on) held during the course of a year. Their goal was to
determine ciiques present in this small p@pulatiéno This example was
subseguently used by Hemans (1950G:82-86) in his section on the
"Definition of the Group." Breiger (1974) has employed an ad hoé¢ clique
detecti@n:procedure tc this data which emphasizes the "duality"lof
persons and groups. |

The unpermuted data matrix, whose (i,j)th.entry signifies tﬁe:
presence-(ﬁl") er ébsence {("0") of woman i at evenﬁ Js is shown in
Fig. 13a. Columns are arranged chron@logically..and TOWS ate orc‘t:éred
arbitrarily. |

The.ﬁresent algorithm was applied to the {(single) original_ﬁaFrixe
Blockings into twe blocks were.ébtained separately for columms (gvénts):
and for rows (wemen). Then these distinct partitionings were imposéd
(respectively) onte columns and rows eof the eriginal data (see Fig. 13b).
In the reordered matrix, one may directly cobserve a strong association
of the first cluster ef women with the second cluster of events. The
presence of this agsociation is corroborated by a Yule's @ of -.941 on
the 2 = 2 table formed by taking within-block sums of the Fig. 11b
matrix,

The twe-block partition of wemen thus obtained is (Eleanor, Ruth,
Charlétte, Brenda, Laura, Evelyn, Theresa, Frances) and (Dorothy,
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Fig. 13.

Participation data on women in a Southern city, illustrating
the use ¢f the CONCOR algorithm to block membership data.

In Fig. 13 (a), women (rows) are ordered arbitrarily and events
(columns) chrenologically (adapted from Homans [1950:83]).
Fig. 13 (b) displays this same matrix after applying CONCOR

separately to rcws and celumns,
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(a) (b)

11111 i1 111
12345678901234 15691423478023

Eleanoy IR ST S Eleanor . | 1111
Brenda 171 111 11 Brenda - ___ | 1171111
Dorothy = ___ 1 1 Laura | 1111111
Verne 111 1 Evelyn 1 1 nnd
Flora 1 1 Ruth 1l pro1
Olivia 1 1 Theresa O S | e A s
Laura 111 1T 11 Charlotte  ___ | 111 " 1
Evelyn T11 71117l Frances 1~ 111

Pearl R T Dorothy r 1
Ruth 11y 1 Verne :il_____ o -
Sylvia 11 11171 Flota 11 |~ -
Katherine ___ 11 111 1 Olivia 11 e
Myrna 111 1 Pearl 1 i
Theresa TI13 11T Al Sylvia NN
Charlotte 1 1 1 1 Katherine 11111 :____l:
Frances 1 il 1 Myena 111 | 1
Helen 1771 T 1 Helen A
Nora 17 1111111 Nora 117113 173 T




Flora, 0Olivia, Pearl, Verne, Sylvia, Katherine, Myra, Helen, Nora). The
first block contains the seven women whom Homans (1950:84) identifies as
members of one ciique, while the second bleck contains the five women
whom Homans ﬁermé members of the other clique. In Homans' evaluation,
the remaining six women were marginal to oﬁe or both cliques,

This application illustrates the ‘usefulness ef CONCOR as a method
for analyzing individualwbywcommittée ﬁembership data.

E. Levine's "Sphers of Influence”

Levine.(1972) has studied a set of interlocked directerates of the
boards of major American banks and corporations. Specifically, this
study starts with a 70 x 14 matrix whoese (i, j)th entry is the number of
directors shared by cofﬁoratienlg and bank j. His "study of network
representation'' employs an unfolding variant of Guttman-Lingoes smaliést
space analysis te produce a gnomonic map of the "sphere of influence."”
We have applied the CONCOR algerithm separately te the rows and columns
of Levine'’s original 70 x 14 matrix in our own effort to identify
clusters of corporations and of banks which are highly interrelated.
Figures 14 and 15 show respectively the results of columh (baﬁks) and
row {corporaticns) applications.

With respect to columns (banks) of the 70 x 14 matri#, the first
bipartition (Fig. l&)Iéeparates the five Chicago banks frem the others.
Repeating the CONCOR algorithm with respect to the nen~Chicage banks,
these latter are separated at fhe next step iﬁto New York banks and
Pittsburgh banks. The one exception is that Chemical Bank of New York
is placed with the Pittsburgh group. Levine's three-dimensional jeint
space also recovers the regional bank groupings.
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| 26§

First Nat'l. Bank Continental lllinois
{ Chicago) B { Chicago)
American Not'l. Bank Northern Trust Co.
{ Chicago} = ( Chitego }
Harris Trust Co,
( Chicago)
BS B6

Chase{NYC) | | Morgan {NYC) Mellon Nat'.8 8T | | Chemical Bank
First Nat'l. City | | Bankers Trust { NYC) ( Pi"Sburgh) (NYC}
{NYC) Manufacturers Hanover - : Pittsbgh Nat'l.Bonk | | Union'Nat'l. Bank
(NYC) . { Pittsburgh} {Pittsburgh)

- Bl

B2 L B3 . B4
Fig. 1lL. Hierarchicsl clustéring representation of repeated -CONCOR

application on the columns (banks) in the Levine (1972) data.




2+3,6,9, .14, 15, 24,
19, 23, 26, 40, 41, 44,
28, 36, 37, 63, 77, 88
38, 42, 45, :
53, 54, 55,
67, 85, 90,
gl .
C5 ) .- Ce6
I, 4, 7, 8, €4, 70, 7I, 5, 10, 13, 18,
i, 12, 17, - Te, 75, 8l, 27, 34, 46, 65,
21, 25, 32, 82,83, ' 43, 56, 68, 79,
33, 39, 48, | - | 78,84, 87
‘1 49, 5l _ 89, 93, | '
.96
Ci , c2 ' €3 - C4

- Flgo 13. - Hierarchical clustering vepresentation of repeated CONCOR

. applicaticn on the rows (corporations) in the Levine (1972)

%
data. Numbering follows Levinea( )

(%) There is an error in labeling TRW in Fig. 10 of Levine (1972:25),
which reports TRW as Corporation 92 instead of 93 as in his
Fig. 5 (1972:19). We follow Levine's Fig. 5 for the present

numbering.

 39b



Turning next tc the rows (corporations} of Levine's matrix, we
formed the 70 x 70 first-correlation matrix Mla Blecking this matrix
through repeated applicaticns of CONCOR leads te the six-block
partitioning of the seventy corperations shown in Fig. 15. (Corporations
are numbered consecutively in the ordering in which they appear in
Fig. S'df Levine, 1972.)

- One ma& compare the Fig. 15 structuré to Levine's'"sphere of
_ihfluence“ obtained by Guttman-Lingces scaling (specifically; te his
.Fig¢ i® [1§72:é§j);: The present results are generally consisteﬂt with
o éluéters‘inxthé Lg§ine smallest space solutien.

One ﬁa&f&léozgonsider the self-censistency of the present dual
7 procedure fof_biocﬁiﬁg on both rows and colums. Figure 16a shows éums
nﬁithin blocks df'the original 70 x 14 matrix, where blocks are defined
by cross—tabulating the sepafate bank and corporationlpaﬁtitions,"Rowé
of Fig.léa index blocks 6f;§orporatioﬁs'(thé crdering of blécks is their 5
ordering from left to right in Fig. :15;);”'cé.01,_u1ms of Flgo 16a index -
blocks of banks (as ordefed in Figcllﬁ)c. U£ilizing a method ef
Mosteller (1968; see alsc Romey, 1971) one may alsc correét for.the
effects of unequal row and column marginals by simultaneously normalizing
row énd'coluﬁn sums in Fig. l6a; The resulting matrix (Fig. 16a) has the
preperty that the largest“entry (1,3) in any row i is also the largest
entry in column j. This may be taken as an indication of the mutual
tendency of particular g:pugs of banks“apd c@rporations to shgre:‘;!;

directors.
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Fig. 16,
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PART II. APPLICATIONS OF MULTIDIMENSIONAL SCALING TO THE

SOCIAL STRUCTURE DATA OF PART 1

Three applications will be develeped, dealing respectively with
the Bank Wiring Roem data, and the Sampson menastery data, and the
Newconb-Nordlie fraternity data. The scaling procedures used are the
MDSCAL program of Kruskal (1964a,b) and the INDSCAL algorithm of Carroll
and Chang (1970), In additien te these scaling procedures, certain
aspects of the MDSCAL solution in the Bank Wiring group example have
also been interpreted through use of a recent non-hierarchical clustering
algorithm of Arabie and Shepard (1973) (acrenym: ADCLUS). This last
means of representation is of special interest because it explicitly
makes allowance for the possibility of overlapping clusters. This
raises the possibility of iselating ways in which the CONCOR algorithm,
and blockmodels more generally, may distort or oversimplify overlapping
membership preperties inherent in social structures te which they are
applied,

In MDSCAL and ADCLUS applications, the algorithms are applied to
first-correlation matrices derived from raw data as in Part I (e.g.,
Figs. 3 and 8). It should be noted that similar matrices describing
correlations ameng sociometric positions have besen studied using
factor analysis in a number of earlier investigations on other data
{e.g., MacRae, 1960; see also Katz, 1947, Glanzer, and Glaser, 1959).13

The data applications are now presented in the fellewing order:
MDPSCAL and ADCLUS on the Bank Wiring Reoom group; MDSCAL on the Sampson

monastery group; INDSCAL on the Newcomb Year 2 data.
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1. MDSCAL and Non-hierarchical Clustering Analysis of the Bank

Wiring Greoup

As a first scaling application, Kruskal's noumetric multidimensional
scaling program, MDSCAL (Kruskal, 1964a,b) is applied teo the first
correlation matrix rep’ofted for the.'Ban.k Wiring data in Fig., 3. The
MDSCAL algerithm is well;known and its details will not-be:resummarized
here, The result of this applidatién is shewn in Figo~17s ﬁhiéh displays
the obtained twm—dimensionai MDSCAL 3M solutien=giving the best stress
(.126, formula 1) of 20 alternative random initialrc@nfiguratio-ns,lZP

Netice that this appf@achit@ network scaiing-is quite'diétinct from
that empleyed by Lgumann and co-wnrkers in studies of the social structure
of a German communipy elite (Laumann, 1973; Laumann and Pappi, 1973;
Laumznn, Verbrugge, aﬁd Pappi; 1974)q Specifically, Laumann and Pappi
start by defining a diétance métfix in:terms cf the least-path distance
between individuals in a giveh network (all felational ties presumed
symmetric). There is ne formsrien of é correlation matrix such as M1
in Fig. 3, and the Laumann approach measures connectivity rather than
similarity of structural position.

Comﬁatibility.of Fig. 17 with blockmodel appraaches.using CONCOR )
is extremely geod, te the point where one can infer most of the
hierarchical.clustering shown in Fig. 4 from examining convex clusters
in the scaling-salution of Fig; 17, The two central cliqdes'A and B
identified in Homans' analysis (p. 26 above} emerge as well-separated
clusters in the scaling. The wiremen W2 and W6, who are both essentially
classified by Homans as hangers—on, occur in positiens close to, but
somewhat removed from, their respective cliques. This summary statement
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Fig. 17.

Two-dimensional MDSCAL-5M sclution for input proximity

data given by Fig. 3 (first-correlation matrix for the
Bank Wiring Group). Stress formula 1, stress = 12.6%.
Superimposed clusters are cbtained from the CONCOR

results shewn in Fig. 4.
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is also true, to a scmewhat lesser extent, of SZ and:(WS, 13), which the
4-block CONCOR model places as hangers-on to Homans' cliques A and B,
respectively. The further CONCOR applications reported in Fig. 4, which
lead to still finer partitionings, are also clearly reflected in the
scaling; thus cligue &4 in the scaling breaks up into (W1l,W3) and
(S1,W&,I1}, and tﬁié last cluster in turnm splits inte Il and (S1, W4),
aggin reflecting the CONCOR performance shown in Fig. 4.

Despite this wery close agreement between the two algerithms,
CONCOR and MDSCAL, there is also good reason to probe as hard as possible
in the direction of nom-hierarchical ways cf describing the social
structure. In order to explore this direction, application has bgen made
of the recent ADCLUS algorithm of Arabie and Shepard (1973); Given a

single proximity matrix P = [Pi ] on n items, this algorithm is designed

_ |
to select a family»j?@f {possibly overlapping) clusters or subsets - of

these items and assign a positive numerical weight w. to each cluster C,

c

in such a way as to achieve a best fit to the additive membership model

v N 5 6 w5 = |1 if item '
ij i T3C TCF T4ic i is centained in cluster C,
C 0 otherwise,

b,

i.e., a model which predicts the similarity between two items to be the

sum of the weighte of clusters centaining both.

Staxtiﬁg-ffam Eha c@rtelatian ﬁaﬁrix in Eignf3,;appliéati0n of the
ADCLUS algorithm led to the set of clusters and asscociated weights
(which accounted fer 21,2% of the wariance) shewn in Fig. 18, Many of
the clusters are identical or close to those which;are.implied in the

CONCOR. tree (Figq_&)u ‘It is worth noting that the ADCLUS algorithm also
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Fig. 18. 1Ildist of clusters and cluster weights obtained from the Fig. 3
. Bank Wiring Group correlation matrix by the ADCLUS (nen-

hierarchical clustering) algovithm (Arabie and Shepard, 1973).

Weight Present as

Cluster (C} (wc) ' Sub?ﬂ:ree‘in A +
Fig. &
1. (W2,W5,I3) - 4888 | Tes 0
2. (S2,I3) 4155 e’ 500
3, (W6,W7,W8,H9,54) L3951 e ,167
b, (W2,13) . ,3358 oNe 500
5. (W1,W2,W3,51,W4,T1) L2994 Mo ,167
6. (WL,W3,81,W4) | L2742 wNet L2000
" ety 203 oo o
8., (WL,W2,W5,I1) I 2284 Ne  .500
9, (WL,W3) I ©o.2181 Yes - - 0
10, (W9,54) o .2120 No© 500
11, (W5,06,54) 2012 e 667
12, (W6,52,W7, W8, W) 1189 W 667
13, (W6,52,132) | 1162 N ©,333
14, (WL,W2,W3,81,W,05,82,T1) ,1041 No .222
15. (S1,W6,52,W7,W8,W9) ,0808 Ne .286
16, (S1,W5,W8, W9, 11} .0788 No ,600
17.  (W1,W3,8L,Wh,W5,82,W7,I1) . 0640 No . 400
18. (Wi, W2,W3,We,I1) . 0635 Ne ‘ 333
19,  (S1.W4,W6,S2,W7,W8) ,0587 No 500

* Differs from some subtree Fig. 4 only by one man (either added or subtracted).
*% This cluster is the only cluster in the high-weight group [Clusters 1~-11]
whose meaningfulness is clearly in doubt.

+ A= ACI=min (I%l), where T is the Fig., 4 tree, S& T means that 3
: SET \ | SUC |
is a cluster implied by T {in the terminoclogy of Boorman and Olivier,
1973, S is the node set of a subtree of T), and A is the standard set-
thecretic symmetyic difference operation. | | denotes the size of a
set. A(C) has the properties of a distance measure (see Boorman, 1970).
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assigns major weight to some clusters which are not directly implied by
Fig., 4 and yvet which have been given explicit interpretatien in Homansf_:
verbal description. Amcng such clusters aﬁe.(WI,Wﬁ,WB,Sl,Wﬁ,Il)
(w = ,30) and (W6,W7,W8,W9,54) (w 2 .40y, The second of these particular
clusters, however, appears in both of the Johnson HICLUS solutions for
the Bank Wiring data (see Fig. Al in Appendix 1). Homans (1930:69) speaks
specifically of these two clusters as the twoe groups of individuals who
participated in games (cf. also Games matrix in Fig. 6). . Neither of
these clusters appears in the CONCOR selution ef Fig. 4, 1t should also
be observed that there is a clear elbow in the distribution of assigned
weights of the ADCLUS clusters, with a large jump from the cluster
(W5,W6,54), with an assigned weight ~ .20, to the cluster
(W6,52,W7,W8,W9), with an assigned weight ~ .12.

There is, hewever, little question that the Bank Wiring Group data
basically sustains the hierarchiczl subgroup organization shown in
Fig. 4, It is poessible that the presence of this hierarchical cluster
structure may to scme extent reflect the extent to which the Bank
Wiring data reports an isclated group in equilibrium. Again, it should
be stressed that hierarchical clustering structure has ncthing in
general to do with the presence of social hierarchy, and represents a
totally distinct concept. Presence of such structure is further borne
out by the fourth celumn of Fig. 18, which reports a measure of the
discrepancy between each given ADCLUS cluster and the GONCOR tree in
Fig. 4. Taking the product mement ccrrelation between the weights

w, and the A columm cof Fig. 17, one ocbtains r = -.37. This indicates

C
a positive relation between the magnitude of ADCLUS weights and the .
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property of being close to some CONCOR bleck, 1In other words, the
highest weight clusters in the. ADCLUS seluticn alsc tend to be similar
to clusters cbtained in the Fig. 4 hierarchical clustering,

2., MDSCAL Analysis of the Sampson Monastery

The same écaling procedure as in the last section has alsc been

“ applied tu the 18-man Sampsen monastery group., Figure 19 reports the
two-dimensional MDSCAL sslution starting with first-correlation matrix .
used in the CONCOR analysis of this same data {Fig. 8 above). Again, the
scaling algorithm reproduces the basic blockmodel clusters. The Young
Turks emerge as =z distinct cluster, ag also sre the Leyval Oppesition and
the Ou;gaéts (see Fig, 19, and notice the strong similarity to Fig.

XVII [p. 370] in Sampscn, 196%). The interstitial status of man 13
emerges very clearly from the scaling plet, and it ig evident from this
position why there might be some ambiguity as to his placement (Loyal
Oppesition or Gutcasts, but it is not clear which)., Men 8 and 10, whom
Sampson also views as waverers, are clearly placed between the core
Loyal Opposition and the Young Turks, although cleser to the former
cluster. This last placement is one respect in which the scaling
solution gives infermetien which CONCOR dees not (see Fig. 9).

The furthexr applications of CONCOR, leading te the Fig. 9 tree,
are somewhat less consistent with the detailed structure of the scaling
solution than in the Bank Wiring case. For example, (19911) and
(5,9,13) are both blocks obtained through CONCOR, but these blocks
crosscut one another in the Fig. 19 secsling.

 Viewed within the context of the MDSCAL selution, scme of the more.
elongated clusters in Fig. 19 look suggestive of the "chaining" effects
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| Young: Turks

Local /

Opposition

Qutcasts

Fig, 19. Two-dimensional MDSCAL-5 soclution for input.proximity
matrix data given by Fig. 7 (first-correlation matrix for

- Sampson's monastery data). Stress formula 1, stress =

18.6%. Superimposed clusters selected from the CONCOR

*
results in Fig. 9.

N .
There is one particular cluster (5, 9, 13) implied by Fig. 8 which
for reasons of clarity is not indicated in the present Figure.
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(Lance and Williams, 1967a; Jardine and Sibsen, 1971) that often
stigmatize the connectedness method in HICLUSO”'ﬁpecifically, "chaining"
is a generic térm fdr the_tendency displayéd by eertain clustering methods
to add new elements to_pre—existing ciusters as one moveé up the
hierazchy, rather than for elements te act as the nucleus‘ef neﬁ groups
(Lance and Wiliiaﬁs, 1967a:374) However, more systematic inveétigation
“in the Apﬁen&ixﬁindicétés that the overall mathematical behavior of
CONCOR on thelsaﬁpsmn data.ié actually clager to the diameter method

than either methed is te the connectedness methed.

3. INDSCAL Anaiysis of the Newcomb Fraternity Data

In its entirety, Nordlie-Newcomb data conéistg of complete preference
profiles for fraternity gf@ﬁps in each of twé‘years, reported each week
for sixteen weeks {except for the absencé:&f reporited data from the ninth
week of Yeasr 2; see Nordlie, 1958). Henéeforth, following Newcoub, we
will enumerate Year 2 weeks with references to this missing week and .
starting with Week 0, thus 0,1,2,3,4,5,6,7,8,%,10,11,12,13,14,15. This
depth of longitudingl information is exceptional in the published
literature, and opens the possibility of systematically tracing the
evelution of the seccial structure in each year (compare the use of
MDSCAL in Arsbie and Boorman [1973] te trace the gver-time changes in
the social structure of a vervet monkey trcep, drawing on data of
Struhsaker [1%967] and partitieon metrics developed in Boorman {197€] and
4Béorman and Arzbie [1872]). Specifically, even very crude examination
of the Newcomb~Nerdlie data suggests that the final situation in Week
15 of Year 2 Waé the equilibrium outcome of a préceéé_which‘starts in
Week 1 and rapidly approaches the final structure by Week 4 or Week 5.
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For instance, consider the specific two-block model obtained earlier
(p. 24) and note that the number of errors asseciated with this blocking
is 1 (in the I matrix, lower right) and 5 (in the g matrix, top and bottom
left),.giving 6 errors in all. Over the fifteen weeks the number of
errors counted in this same way for each week lead to thg 15-term sequence,
starting from Week 0 (37,33,30,30,25,15,8,11,10,X,10,9,11,10,9,6) (the‘
X reflects the data not recorded from Week 9). It is clear that initially
in Week 0 there is a very large num&er of errors which indicates
éssentially no tendency toward the final blocking, that in Weeks 1-5 this
number of errors decreases sharply, and that from Weeks 6-15 the number
of errors is much lower and roughly constant, indicating that equilibrium
block structure has been essentiaslly reached, aithough some individual
variability among weeks continues to be 1:wt'e;se-.;nt:n

We will now try to recapture this evolutien in a way which dees not
explicitly read backward from a blockmodel analysis performed on data
in the final week. The Carroll-Chang INDSCAL slgorithm is a natural
vehicle for making this attempt. Because use of INDSCAL has been almost
exclusively restricted to the psycholeogical and marketing literature
(e.g., Wish and Carrell, 1973: Carrell, 1973 and references there), we
first give a brief restatement of aim of the algorithm.

The basic idea is one of dval scaling. Initially, using the
standard psycholegical interpretation, suppese that one has a group of
m subjects who each give a judged proximity matrix ameng n items. It is
desired to place the n items in a single ("stimulus") space reflecting
some kind of group (or compesite) judgment, and simultanecusly te place

the m subjects in a second ("subject') space reflecting individual
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differences among subjects. The wvery strong and specific hypothesis

is tiow made that subjects differ from one anether enly through differential
weights which they attach to the dimensions of a Fuclidean stimulus space
havinﬁ a'ﬁdn*arbitrary orientation, Specifically, given m nxn proximity
'"(siﬁilarity) metrices Pis'PZ;oao,Pm, the ideaz of INDSCAL is first to
convert the ﬁétricas”Pj'intO'&istance matrices Dj by means of a linear

'tranéf@rmation'aﬁd then te find o stimulue vectors
ok _ k k . _ _—
7§1 = (xli) s=1? x®, = (XZi) qujocecs B = (xai) =1 and m subject vectors
k k
o

By = (wli) g=10cc B = (Whi) =1 such that in a k-dimensional

"modified" Euclidean space, the distance between stimili r 'and s, for

subject j is:

£
{For a more detailed descriptien giving the exact least-squares target
function and nonlinear least-squares fitting precedures, see Carroll.
and Chang, 1970.) Thus, the ebtained vect@rs/§i constitute the stimalus
space sclution and the vecters W, constitute the subject space solution,
It is to be emphasized that, unlike MDSCAL, this algorithm is a metric
gcaling procedure, i.e., will not give results invariant under monetone
transformation of the input preximity data. The stimulus space soelution
also comes equipped with a set of preferred axes along with the weights.
W&i’ se that the cobtained solution is also not retation-invariant,

For the present application of the Newcomb data, the stimulus and

subject spaces will be given the follewing nonstandard interpretations:.
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Standard interpretation Newcomb data interpretation

Subjects Weeks

Stimulil Fratermity members.
No confusien sheuld arise if it is explicitly emphasized that the
fraternity members in the Newcomb data are not being treated as
analogous to subjects in the INDSCAL input.

The procedure is now as follows. Starting with the raw preference
rankings (as reported by Nordlie, 1958), the first step is to convert
these data into a form suitable for INDSCAL input. A number of ways of
doing this have been explered, but the simplest appreach also turns cut
te give the best results. Specifically, convert each preference matrix
for each week j into & matrix of distances ameng fraternity members

Ly830c¢ DY Setting
1 .
Dy(ry8) = 5(P ()42 (), (AV)

where Pr(s) is the preference positien assigned to s by v and Ps(r) is
the analcgous position assigned to r by s {thus beth Pr(s) and Ps(r)
can assume integral values from 1 te 16 inclusive). In the absence of
the Week 9 data, there are then fifteen 17 x 17 matrices Dj'thus defined.
These are taken as distance matrices for INDSCAL input; the INDSCAL
algorithm has been run on this data in each of dimensions k = 4,3, and 2,
accounting, réspéctively, for 64,56, an& 45% of the variance.

Figures 20 and 21 illustrate respectively two corresponding
two~-dimensional projections of the four~dimensional INDSCAL subject-space
and stimulus-space sclutiens. Examining the subject—space solutien

first, there is c¢learly a coherent trend acress weeks, with the later
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Fig L] 20 a

= 0
c 7 61 5

[ = .
@
E

= o 4

( Dimension 1)

Subject-space for two-dimensional INDSCAL solution om
Newcomb-Nordile data (Year 2), showing evclution of group

structure over the fifteen reported weeks. TFlot is

" gbtained from k=é INDSCAL solution, projecting onto

dimensione 1 and 4.
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Fig. 21.

Stimulus~space INDSCAL solution corresponding to Fig. 20,
obtained axes superimposed. Circled points correspond

to second (hangers—on) block in Fig. 2 CONCOR solution.
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weeks (6-15) being clustered much more tightly than the early ones

{0-5), The same separation is alse clear for three of the six other
two-dimensional projections implied by the four—-dimensional subject-space
solution; the k=2 INDSCAL subject-space soluticn shows an analegous
pattern, though here the clustering of the later weeks becomes so tight
as te make discrimination among these waeks diffjcult. These pesitive
results are reinf@rced_wﬁen one now turns to the stimulus space selutien
(Fig. 21); This secend sglution places individual fraternity members

in a common two-dimensional Euclidean space. Superimpesed on this space,
we have indicated the earlier two-block CONCOR division shown in Fig. 2.
It is glear that the members of the éecond CONCOR block (indiﬁiauals
numbered 3,5910914,15,16)9 whom we earlier characterized as hangers—on,
are now placed mainly as outlying points in the INDSCAL solution. This
placement iz consistent with earlier hangers-on interpretations and
suggests that INDSCAL is here recovering az kind of center—periphery

dimension in polar coordinates.

DISCUSSION

There are twe separate topics for summary comments. The first
concerns the contribution o¢f the CONCOR slgorithm te the blockmodel
appreach and its relation te other blockmodel analyses. The second
topic concerns the comparative merits of bleckmodels versus
multidimensional scaling approaches te social network data.

Az far as the CONCOR algorithm‘spécifically is concerned, the
applications we have explered in the present paper show that this

algorithm produces results which stand generally in cleose relation to
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trial-and-error blockmodels satisfying White's criterion of lean fit.
Specifically, the partitioningsproduced by CONCOR are in general cleose. .
to & strict lean-fit blockmedel if any such model exists (e.g., see the
Fig. 5 comparison of CONCOR with White's analysis). This is true even
though the CONCOR algerithm is not explicitly guided by a search for
. zercblocks, The CONCOR algerithm hence emerges as a useful way of-
systematically searching for blockmeodels on unexplored.raw data. Of
course, CONCOR is clearly not the enly algorithm which ceuld be used to
find blockmedels, and other hierarchical clustering algerithms applied
te a first-correlation matrix may in fact produce similar results. In
specific comparisons with HICLUS on varicus data sets, there is evidence
that CONCOR performs in a superior way at the four-block level.. However,
the actusl utility df CONCOR cannot be assessed on so narrow a basis.
Most importantly, unlike standard hierarchicel clustering algorithms
such as Johnson's HICLUS (Jehneon, 1967), CONCOR admits full exploitation
of row-celumn deality because of the possibility of blecking separately
en both Tows and columns of réctangular matrices. While we have not
emphasized these alternztives fdr sociometric data (examples A-C in
Part 1), the nensociometric examples D and E mske heavy use of this dual
blocking pessibility. CONCOR therefore emerges as a natural way ef
unifying algorithmic appreaches te the several distinct netwerk—related
kinds of social structural data, including committee membership data -as
well as sociometric data (Breiger, 1574},

In mest data investigations, it is reascnable and desirable that
both the strict zereblock criterion and the CONCOR algorithm should be
independently applied. The search for blockmodels which are strict lean
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fits to given data is greatly facilitated by an unpublished algerithm -
due to G. H. Heil. This algeorithm takes as input a given blockmodel’
{(e.g., Fig. lc) and given data (e.g., Fig. laj, and produces as output a
list of all (if any) permutations of the original data which conferm to
the proposed blockmodel in the lean fif sense (e.g.., Fig. 1lb). This"
algorithm will be described in detail elsewhere (see Heil and White, 1974).

One extremely valuable feature of the Heil algorithm, which is not shared

by. CONCOR, is the light which it is able to cast on nonunigueness of

blockmodel solutiong. There is no questicn that msny data sets possess
some inherent ambiguity:; we have already run acress cases of such
ambiguity in the presence of "interstitial" men in the Sampsen data '

- {p.’ 34 above). Bringing out this ambiguity is clearly not a task which
can be accomplished by a single algorithm like CONCOR producing a unique
solution. It is alse very Interesting that one may be able te cebtain
partitienings identical to CONCOR by directly applying the Hell algorithm
te raw data under an appropriately chosen blockmodel "hypothesis,"
Develepments along this last line are pursﬁed in White and Breiger (1974).

Next, rhere ls the problem of zssessing the scaling analyses in
Part IT. The result of applying MBSCAL-3 M to the Homans and‘Sampson
first-correlation matrices is impressive (and especially seo in the light
of the Homans and Sampson anzlyses) and is alse in excellent agreement
with the cutput of CONCOR on the same matrix. This suggests that MDSCAL
of a first-correlation matrix is a valuable probe inte a concretely
presented social structure. This way of applying MDSCAL appears new and
supplements the use of more classical techniques like factor analysis
(e.g., MacRae,-l960)sls
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This consideration leads to"a very important additional point., The most
interesting substantive results of the present paper have been obtained
when we have returned to the original raw data and imposed on this data
the row and column permutaticns implied by a CONCOR blocking (e.g.,
Figs. 6 and 10). This feedback to underlying relational data is a
distinctive feature of blockmodel zanalysis which is net shared by scaling
procedures. The ultimate aim of blockmodel analysis is to analyze the
network of relatiens among blocks; in fact, blocks are defined in the
first place through reference to such a network. In this sense, it is
actually misleading te spesk of blockmodels in terms of structural
equivalence of individuals alone: blockmodels imply equivalence of
individuals in the same block, but at the same time also imply networks
of relations among blocksal6 By contrast, the aim of the scaling
applications is to recreate as much as possible of a social structure in
a Euclidean space (more generally, in a Minkowski r-space), dispensing
with the eriginal network structure and substituting a mere familiar
spatial onea17
Finally, we sheould agsin stress the complementarity between the twe
modes of analysis. Scalings sbtained as in Figs. 17-21 explicitly lose
track of network structure, but bring cut the geometry of structural
poesition in a much richer way than is possible through any clustering
technique (e.g., by use of CONCOR). Blockmodel analyses are inherently
restricted to clusterings, but make use of these clusterings to extract

direct information out of raw network structure.
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APPENDIX
“Numerical Studies of the Similarity of CONCOR to Johnsen's

Connectedness and Diameter Methods in Two Data Cases

The present appendix gives a combinaﬁorial appreach te the preblem
of comparing CONCOR.wi;h the two methods of Johnsen's HICLUS algorithm
(connectedness and diamgtér methods) . Séecifipally, we view the output
of each hierarchical clustering method as a binary tree énd we apply one
oﬁ thgltree distances B(TigTz) developed in_Boormag and Olivier (1973).

One difference between CONCOR and HICﬁUS is the absence of any
valuation of levels in CONCOR trees analogous te cluster values A in
Johnsen's procedure (see alse Figc?)° In the terminology of Bodrman
-'énd-olivier (1973), the cutput of CONCOR is hence a bare tree, whereas
the HICLUS methods 1¢ad to valued trees. In order toc compare bare‘tor
valued';regé9 either of two strategies m@y be followed. On the one
hand, there‘are varicus possible proceduresfor converting a bare tree
ipta a valued tree, e.g., by assigning a value to each node which is the
size of the corresponding subtree., Alternatively, it is possible te
treat any valued tree as bare by simply disregarding the associated
cluster values. We presently follow the latter approach as the.less
artifigial‘strategyo

Given any bare binary tree {(e.g., as represented in Figs. 3, 9,
etc.) one may eduivalently represent the tree as the co-llecﬁtion Qf all
its pode sets, 1.e., sets of items falling under_some_given node. Thus

in the Bank Wiring tree (S1, W4, Il) and (W1, W3, S1, W4, Il) are node
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sets, whereas (S1, W4, W3) is not. Notice that the full structure of
the original tree may be recovered from the collection of all its node
sets, gso that no information is lest in passing from the original tree
structure to this set of sets.

Any binary tree on n items will then lead te a cpllection of n-2
subsets, where without less of informatioﬁ one lgnores both the trivial
node set consisting of all items and fhe singleton sets formed by.taking
each_item alone (i.e,, the highest and lowest levels of hierarchical
clustering).

Then one may defing as follows a distance B(Tl,TZ) between any two
bare trees:

Definition (=Definition 1.1 in Boorman and Olivier [1973:29]),
_ n-2 :
B(Tl,Tz) mln ;1€ l W, AXf(l), y Where '{%;}izl ig-.the celléction of node

formed from Tl,‘{‘:gn—Z is the analogeps collection formed from T,,
and £ is a permutation of the first n-2 integers. Here A reéresenté the
operation of forming the symmetric difference between two sets (i.e., thé
set of elements contained in one or the other, but not in both), and ‘ l
denotes.the size of a set, |
Ihe distance B may be shown te have various désirable properties,
and in particular is a wmetric. The definition of R represents a
special case of a very general principle which may be employed to define
structural distances in mény situations (Boorman, 1970). In geneial,
Ehg_pempupatio? of _B(Tl,Tz) reduﬁes to an optimal assignment problem
(Ford and Fulkerson, 1962), but in simbie cases the optimal assignment

may be readily computed without recourse to a linear programming algorithm.
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- We now apply the metric B(Tl,Tz) to the present problem. Figures.
Al and A? show respectively the nede sets cbtained through each of the

three methods (CONCOR, diameter, connectedness) on the Bank Wiring data

and the Sampseon data respectively. Both figures are presented in such
a way that identical clusters fall on the same line.

“'To compute B(TI’TZ) between -any pair of metheds in Figs., Al-A2,
it is only necessary to find an optimum ceorrespondence between clusters
~ not prdduced by both methods. Figufes A%-A4 shew calculation ef the
optimum correspondences for the two data sets. Given the correspondence,
calculation of 'B(Tlst) is then immediate; the results are alseo |
-reported in Figs. A3-A4.

The result ef these calculations shews that there is no simple
relation among the three metheds. In the Bank Wiring case, CONCOR is
more similar to both HICLUS metheds than either of these metheods is to
the other. Of the twe methods, CONCOR is more similar te the cemnected-
ness methed. Tsken aleone, this result is evidence for placing CONCOR
in an intermediate position on a diameter-connectedness centinuum, hence
following the classificateory strategy of Jardine and Sibsen (1971) and

paralleling the intermediate position on such & centinuum of varicus

other clustering methods (e.g., Sokal and Michener [1958]1; Hubert [1972]).
~On the other hand, this situation is reversed in the case of the Sampson
data. Here the two HICLUS methods are actually ¢leoser to ene another
than CONCER is to the connectedness method., In this second case,
therefore, the relevancy of the diameter-connectedness continuum

proposed by Jardine and Sibson quite clearly breaks down. Also, this

result helps to alleviate suspicions that CONCOR may in general behave
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Fig. Al. Clusters produced by three algorithms (CONCOR, diameter method,
~connectedness method) eon the Bank Wiring data. Trivial-
clusters (consisting of single individuals or the entire . f
populaticn) are not recorded; since these clusters are
produced by all methods, they do net affect computation of
3(T1,T'2)n Identical clusters are placed on the same line,
CONCOR Diameter method Connectedness methad
cl: (Wi,w3) DL: (W1,W3) Kl: (W1,W3)
T 62: (S1,W4) D2: (SL1,W4) K2: (S1,W4)
C3: (81,W4,11) .
Cé: (Wi,W3,51,W4,I1) K3: (WL,W3,51,W4,11)
C5: (WZ,W3) D3: (W2,W5) K4: (W2,W5)
C6: (W2,W5,13) " K5: (W2,W5,1I3)
C7: (Wl,W3,S1,W4,1I1,
W2,W5,13)
C8: (W6,S2)
C9: (W8,W9) Db (W8,W9) K6: (W8,W9)
Cl0: (W7,W8,W9) D3z (W7,W8,W9) K7: (W7,W8,W9)
Cll: (W7,W8,W9,54) K8: (W7,W8,W9,54)
ClZ: (W6,52,W7,W8,W9,84)
" ' D6: (W2,W5,T1)
D7: (Wl ,W3,81,W4) ¥9: (WL,W3,81,W4)
D8: (W1,W3,S1,W4,W2,W5,11)
D9: (82,13
" DI0: (W6,S4) K10: (W7,W8,W9,84,W6)
“DIL: (W7, W8,WI,.W6,54)
 DI2: (W7,W8,W9,W6,54,52,13) Kll: (W2,W5,13,52)
KiZ: (I1,Wl,wW3,S1,W4,
'82,13,W2,W5)



Fig. 42. As Fig. Al, for the Sampson monastery data.

CONCOR : Diameter methed Connectedness method

cls (1,7) ' :

c2: (2,15) Di: (2,15) -~ Kl: (2,15)

€3: (1,7,2,15) D2: (1,7,2,15)

Ch: (12,14) D3: (12,143

C5: (12,14,16) D4: (12,14,16) -

Co: (1,7,2,15,12,14,16) D5: (1,7,2,15,12,14,16) K2: (1,7,2,15,12,
14,16)

c7: (17,18) D6: (17,18) K3: (17,18)

c8: (3,17,18) D7: (3,17,18) K4: (3,17,18)

c9: (1,7,2,15,12,14,16,

3,17,18)
Ci0: (4,6)

Cll: (4,6,8)
clz: (10,11)
Cl3: (4,6,8,10,11)
Cl4d: (5,9 B8: {5,9)
Cl5: (5,9,13)
Cl6: (4,6,8,10,11,5,9,13)
Dg: (6,8)
Di0: {10,6,8) '
D1i: (4,1L) K5: (4,11)
DLZ: (5,9,4,11)
DL3: (3,9,4,11,10,6,8) Ké6: (5,9,4,11,10,6,8)
Did: (7,2,15) |

P15: {(13,3,17,18) K7: (13,3,17,18)
Dl6: (1,7,2,15,16,12, - K8: (1,7,2,15,16,12,
14,13,3,17,18) 14,13,3,17,18}.

K9: (9,4,11)

K10: (10,9,4,11)

Kll: (6,10,9,4,11)
K12: (8,6,10,9,4,11)
K13: (2,15,16)

Ki4: (2,14,15,16)
K15: (1,2,14,15,16)
K16: (7,1,2,14,15,16)




Fig. A3. Computation of eptimal assignment between distinct clusters
produced by the different methods on the Bank Wiring data.
Clusters referred to in netation of Fig. Al., An optimal
assignment (not necessarily unique) pairs correspending columns
and rows, e.g. (in [a}) C3 to D9, C4 to DV, etc. B(T ,Tz) is
hence given by the trace T = a . for each of the inté&rger-
valued matrices shown. i B
(a) CONCOR- B9 D7 D6 D8 DIO DLl DI2
diameter : . : '
me thod cx 5 3 & 4 5 _ 8 10
. c4 7 1 6 2 7 10 12
c6 3 7 2 6 5 8 8
c¢7 8 4 5 i 1 13 13
8 2 6 5 9
cll 6 ] 7 11
clz2 e 10 g 13
B(CONCOR, diameter) = 13
(b) CONCOR- K9 K12 .311 Ki0
connectedness c3 3 6 ¥ -8
method . 7 4 1 6 13
c8 6 g &
c12 i 13 8
8(CONCOR, connectedness) = 9
{¢) Diameter K5 K12 RKil1 K3 K8
: e thod- y -
connectedness b6 2 6 3 6 d
method D8 6 2 7 i1
' D9 3 7 2 7
Dlo0 5 11 &
01z & 12 7 iz

B(dismeter, connectedness) = 16
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Fig. A4.

(a)

(b)

(c)

clusters fellows Fig. A2,

As Fig. A3; fer the Sampson monastery data.
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quite similarly to the connectedness method,'and in particular that
CONCOR may be prone to similar difficultieé ef a "chaiﬁing" type (see
also above, pp. 45=46).

Of course, all results based on a priori metrics do not take account
of substantive features eof particular data sets, and hence have
limitations for this reason. Also, there is as yet no develofed
distributien theery for the wvalues of trée metrics, which would enable
statements about levels of significance te be made. Ling (1971) presents
results which constitute a start in this direction. frior ﬁo development
of such a theeory, only ordinal comparisons among distances between

clusterings may bé made with any riger.
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FOGTINOTES TO TEXT

lThe algorithm was initially suggested by the empirical discovery of
converpence of iterated correlations (see below.p. 12) on network data
reporting contacts ameng research scientists in.an emerging biomedical
specialty'aréa (described in Griffith, Maier, and Miller [1973]).
Subsequently, Dr. Tragg of the University of Surrey pointed out that

work constituted an independent rediscevery of the "iterative,
intercoelumar correlation analysis' proposed by McQuitty and his co-workers
(McQuitty, 1968; McQuitty and Clark, 1968; Clark and McQuitty, 1970).

See text for further discussien,

2A clqsely related view is expfessed by Needham {1265:117):
The meral ef this is that we should not lesk for an

"internal".definitien of a cluster, that is, ene depending

on the resemblance of the members to each other, but rather
for an "external" definition, that is, one depending on the
nen-resemblance of members and non-members.

n

Translating "resemblance" intec "presence of network ties," it is

clear that the idea here is very similar to the present conception.
Iﬁeﬂ ] if 35 = (xi) i=19 z : (yi) i=l$

=]

- -~ 1
vhere x' = (xi~x) x = = IX;, etc., and ° and || \| dencte the

i=1°?
Euclidean inner product and norm, respectively. If Ef or zj = E’then

_r(§,2) is formally undefined, which gives rise to certain exceptions
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to the basic convergence fact (2-BLOCK).

4MgQuitty and Clark (1968) attempt te give a formal proof of the

:_ :convergence, but their argument does nct aépear to be rigorous and gives
1ittle information on the mathematical behavior of the algorithm.

5Thé kﬁifewedge éharacter of the'exceptions was pointed out.aﬁd

‘investigafed by Jeseph Schwartz, Clark and McQuitty (1970)‘réport

ceftain exceptions te the convergence; additional classes of exceptions

" have also been communicated to us by Ingram Olkin of the Stanford

Department of Statistics (personal communication).

6A second formal class of exceptions which should also be noted eccurs

when Mb is taken to be of the ﬁorm Mﬂ(igj) = Eifi’; where ? ci.= % di =

?N (i.e., where Mb cofresp@ﬁds to the standard null hypothe:is of iew—
..chlumn independence in a contingency table). Then forming correlations
either between rows or between celums, one obtains Mi(i,j) = 1 for all

i and j and it is clear that statement (2) fails.

ZIn principle, the semigroup (White, 1969) and categery-functor (Lorrain
and White, 1971) approaches to the algebraic énalysis of seocial networks
also give an impertant place to simultaneous treatment of multiple types
of tie.’ However, existing computational methecds do not easily extend to
Vhandle mere than twe distinct relations Simultane@uslyo As a result,
for many applicaticns it is necessary to aggregate quite substantially
Before applying the algebra.

8Wh:i’.te (1974b) also reperts a more refined five-block medel of the same

détao White and Breiger (1974) develop a three-block model which is a
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refinement of the two-block medel in the text, viz. (13,9,17,1,8,6,4),
(7,11,12,2), (14,3,10,16,5,15)., This three-block model is obtained by
using the Heil enumeration algerithm (see p. 52 below) rather than

CONCOR, and hence provides an interesting check on the CONCOR solution.

9Letter notation for 2 x 2 blockmedels fellows conventions adopted by

White (1974b, Table 1).

0White (1974b) actually presents two bleckmodels for the Homans data.
We discuss only his model which clesely resembles our own., See White
{in press) for a discussion of the substantive differences between his

two models of the Bank Wiring group data.

1The "Trading Jobs" matrix is alse not symmetric {(in fact, it is
asjmmetric) but the tie density is very low (number of entries = 7;
see Homans [1950:67]) and hence this relation is little help in

clarifying status relationg among groups.

2The two methods are alsc referred to in the literature by a wide variety
of other terms., The diameter methoed is alse referred to as the
compactness or minimuﬁ méﬁh@& {Jehnsen, 1967), the furthest-neighbot
method (Lance.and Williams, 1967a), and the complete~link method
(Jardine and Sibson, 1971). Similarly, the connectedness method is
also referred to as the minimum method (Johnsen, 1967), nearest-neighbor
method (Lance and Williams, 1967a), and single-link method (Jérdine and

Sibson, 1971). The terminological jungle is a nuisance.

3There are some slight variants in procedure. TFor example, Katz (1947)
proposes to leave out any mutual choices between two individuals i and

j when correlating their pesitions in data given by a standard
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positive-cheice sociometric procedure, Obviously, this medification
will make little effective difference if the group is of any size.

141t is notewsrthy that the cenfiguration (in Fig. 17) cerresponding to

the lowest stress value of .126 was by no means the first obtained in

the series of 20 different initial ' configurations. (In fact, Fig. 17

was the thirteenth obtained solution; the twelfth selution hgd vielded
a stress of .321.) The value of .126 for a two~dimensional selution
with 14 stimuli is, of course, quite respectable accoxrding to Kiahr's
(1969) Meonte Carlc study. However, arguments have been advanced
elsewhere - (Arabie, 1973) as to why the values in that Monte Carle study
(which, aleng with that of Stenson and Knell [1969} gives the most
useful data curren;ly available) are inflated, owing to uﬁfortunate
properties of Kruskal's L~configuration. |

15It is worth noting, however, that MDSCAL (as alse INDSCAL) is an

| “expensive technique by virtually any measure, especially in the light
of the initial configuration problems discussed in the precéding
feotgote. One major practical side of CONCOR{shared, of course, with
many bther_hier&rchical clustering meth@ds}_is that it is cheap and
extremely easy to implement. |

lﬁNote, however, that in introducing blockmedels one is explicitly

decoupling structural equivalence from the idea of compounding or
concatenating secial relationships (contrast White, 1963; Lorrain and
White, 1971;.a15@ White, 1970; Boyd, 1969). This is the major
substantive break between bleckmodels and the earlier.algebraic

approaches to social netwerk analysis represented by work of White,
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Lorrain, Boyd, and other investigators.

For a derivation of the relation between Euclidean distance models
(e.g., the MDSCAL soluticns presented here) and hierarchical

representations such as Johnson's methods, see Holman (1972).
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