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PERSPECTIVE

Revisiting the Foundations
of Network Analysis
Carter T. Butts

Network analysis has emerged as a powerful way of studying phenomena as diverse
as interpersonal interaction, connections among neurons, and the structure of the Internet.
Appropriate use of network analysis depends, however, on choosing the right network
representation for the problem at hand.

The past decade has seen a dramatic surge
of interest in the study of networks, with
much of it in fields outside the “traditional”

areas of mathematics, computer science, and the
social sciences (1, 2). By providing a formal mech-
anism for representation, measurement, and mod-
eling of relational structure, the use of network
analytic methods in these new domains (including
physics, biology, andmedicine) has arguably paved
theway for a range of advances. On the other hand,
this rapid expansion creates the risk that existing
methodsmay bemisapplied or misinterpreted, lead-
ing to inappropriate conclusions and generally poor
results.

Standard Framework and Core Assumptions
Most network research is based on a representa-
tional formalism borrowed from graph theory.
Researchers begin with a finite set of identifiable
entities, which are represented via a vertex set.
Each element of this set, commonly called a node,
represents a single entity that potentially may take
part in the relation under study. Relationships them-
selves are represented via edges, which conven-
tionally are either unordered pairs of nodes (in
which case the relation is said to be undirected) or
ordered pairs of nodes (in which case the relation
is said to be directed). The network is represented
by a graph, which is defined as the set of nodes
together with the set of pairwise relationships
among them (Fig. 1A).

This representational framework is quite re-
strictive. To represent a system in this way, we
must be able to reduce it to a well-defined set of
discrete componentswhose interactions are strictly
dyadic in nature. For any given (possibly ordered)
pair of such components, the relationship is di-
chotomous, either present or absent; although such
a framework may seem so restrictive as to be use-
less, its typical purpose is to serve as an approx-
imation to the structure of amore complex system,
for purposes of studying a particular property (such
as the diffusion of a disease in a community over
a specific time scale). Moreover, it is precisely

the reductive nature of graphical structure that
has facilitated its rich mathematical development
(3) and associated scientific applications (4, 5).

Extensions and relaxations of this basic frame-
work designed to accommodate more complex
situations are many and varied. Wemay avoid the
assumption of dichotomous relationships by al-
lowing edges to carry different weights [such as
the differing connection strengths among neurons
in Caenorhabditis elegans (Fig. 1B) (6)]. Multi-
lateral relationships (such as group memberships)
may be represented by means of “hyperedges,”
which can involve arbitrarilymany nodes (7). Tem-
poral aspects of relationships may be handled by
treating them as time series (8), such as with re-
peated cross-sectional sampling of group struc-
ture or Internet topology; as time intervals (9), such
aswith life history data onmarital and employment
relationships; or as effectively instantaneous events
(10), such as with e-mail exchange or radio com-
munications (Fig. 1C).

Many measurement, analysis, and modeling
techniques are rooted within the standard frame-
work. However, when assumptions of this frame-
work do not serve as reasonable approximations
of the system of interest, alternative representa-
tions and techniques may be necessary. What fac-
tors should be consideredwhen choosing a network
representation, and what are the consequences when
this choice is poorly made?

When Is a Node a Node?
Consider a biologist who wishes to examine the
structure of animal parasite–plant interactions and
so undertakes a network study. Given sufficient
time, technology, and resources, he or she might
sample some designated area and document all
such interactions, perhaps constructing a network
of ties between each animal within the area and
the sites on which it feeds. But what should count
as a potential feeding site? Treating each plant as
a single site may seem reasonable for relatively
small plants but would obviously obscure the po-
tentially complex interactions associatedwith even
a single tree. Additional detail could be accom-
modated by distinguishing between classes of ana-
tomical units (such as bark versus trunk versus
leaves) or within classes, but here too judgment
must be applied in determining which distinctions

to make. The biologist’s method of defining po-
tential feeding sites will greatly influence the
structure of the interaction network.

The basic problem is the definition of the
class of distinct entities onwhich one’s relation of
interest will be defined. The mere act of positing
such a class, of course, smuggles in the tacit as-
sumption that such a class can be defined (and
moreover, that it is scientifically useful to do so).
The choice of individual humans as nodes in
studies of friendship (11) or kinship (12) networks
and the use of individual publications in citation
studies (13) are examples in which this assump-
tion is well-justified. On the other hand, studies of
interactions between aggregates such as groups
(14), households (15), or organizations may en-
counter problems due to the fluidity of the inter-
acting units and the fact that subunits of a larger
unit may themselves interact with others both
within and without the “parent.”

As in the biological example, collapsing all
potentially interacting elements into a single unit
may be a very poor approximation of reality. For
example, my research group has studied networks
formed during organizational responses to disas-
ters. If we pooled all the groups operating under
the aegis of one national government, then we
would obscure the difference between small units
such as urban search-and-rescue teams and large
government ministries or departments, and also
would incorrectly suggest that the resources or
collaborators of one are necessarily available to
the other. Other systems that also would be ob-
scured by pooling include the molecular archi-
tecture of protein-protein binding sites (16) and
hierarchical structures in the topology of the
Internet (17).

Changing the node set can substantially in-
fluence the size and density of the resulting net-
work, with considerable implications for subsequent
analysis. For instance, the behavior of basic net-
work properties such as degree centralization (a
measure of the extent to which ties are concen-
trated on a small number of nodes) are known
to change both qualitatively and quantitatively
with size (18), as do the properties of even fairly
simple models of network formation (19, 20). In
hierarchical contexts, different aggregation deci-
sions can produce networks with very different
structural features (Fig. 1A). To avoid misleading
conclusions, the set of nodes should be defined
so as to include all distinct entities that are capa-
ble of participating in the relationship under
study; this definition should be used consistently
across networks. Where no such set of entities
can be uniquely identified [as is sometimes true
in geographic analysis in which a continuous
space is modeled as a partition (21)], it is possible
that a finite network representation will be in-
appropriate. An alternative framework (such as
a continuous spatial representation) may prove
more fruitful. In other cases [such as multilevel
processes (22)], simultaneous analysis of the same
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system at multiple levels of aggregation may be
appropriate.

When Is an Edge an Edge?
Many legal institutions (such as marriage) are di-
chotomous, and few if any societies allow one to
be one-third someone’s mother. Even for relations
with quantitative aspects, one can often usefully
identify relationships as present or absent.We do or
do not regard another as a friend; a given neuron
does or does not connect to another. When a rela-
tionship reflects either a general tendency toward or
potential for interaction, the use of a binary repre-
sentation can greatly simplify both theory and mea-
surement. It is much simpler, for instance, to study
sexual relationships than to enumerate sexual en-
counters, and indeed the mere potential for interac-

tion can have behavioral consequences, even when
specific relationships go unused [as in the case of
potential trading partners in exchange networks (23)
or third-party observers in dominance relations (24)].

Dichotomous distinctions can sometimes bemis-
leading. Many forms of interaction are inherently
episodic and occur at variable rates (25). Dichoto-
mization of such data not only obscures such varia-
tion but also requires selecting a threshold level, the
choice of which can substantially alter the proper-
ties of the resulting network, both directly through
selective tie removal (26) and indirectly through
changes in network density (27). The range of struc-
tures present at different connection strengths can
vary greatly (Fig. 1B). This cannot be resolved
solely with better data collection or more elaborate
statistical techniques. Rather, one must determine

whether the relationship under study is sufficiently
stable to be well-approximated by a constant func-
tion over the period of interest and whether the val-
ues taken by this function across pairs are sufficiently
constrained to be approximately dichotomous. For
relationships known to be highly heterogeneous
(such as trade or migration rates), no single threshold
may suffice; a weighted graph representation will
frequently be more appropriate. More studies that
assess the effectiveness of such approximations—
and provide concrete, empirically validated guidelines
for practice within particular problem domains—
would be a welcome addition to the literature.

Time Scales and Network Processes
In determining appropriate node and edge repre-
sentations, it is vital to consider the time scales on
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Fig. 1. Effects of changing definitions of “node” and “edge.” (A) Network of
interorganizational collaboration in the first 13 days of the Hurricane Katrina
response (39) illustrates potential consequences of node aggregation; edges
represent collaborations. Depending on the level of aggregation, each subor-
dinate organization could be considered a node or a parent organization (con-
taining subordinate nodes). (Left) The finest level of disaggregation, with all
subordinates of a given organization having the same color. (Right) Iteratively
merging randomly chosen organizations in the original network with their
“parents” produces a series of increasingly aggregated structures. Shaded regions
show the central 90% range of aggregated values on the basis of 100 series, and
lines represent their means. The extent of aggregation affects fundamental net-
work properties, as does the sequence of aggregation steps (indicated by width of
the simulation intervals). (B) Neural network of C. elegans [based on (6)] shows
differences in connection strength among neurons indicated as line (edge) shad-
ing in the figure at left. Nodes represent neurons, and edges reflect direct connec-
tions (arrows indicate directionality). All possible connections are shown regardless
of their strength (threshold level = 0). Taking different thresholds for the edges
(from 0 to 50% of maximum observed edge strength) leads to networks with

different structural properties (right). (C) and (D) show the effects of edge timing,
depicted as contour plots (right), in systems in which the edges are not static; each
line represents the fraction of the population reached by the diffusion process.
(Left) Time aggregates for the network being studied, including all relationships
occurring during the observation period. (C) A radio communication network from
the World Trade Center disaster, containing the largest set of people described in
(29) from Port Authority Trans-Hudson channel 26 that were connected to each
other by any chain of calls (left). Numbers within each contour line (right) indicate
the mean fraction of the network that could receive information from a randomly
chosen individual through an exponential diffusion process with the indicated edge
parameters over 250 simulation runs. Static properties have not changed, but
edge-timing variation (how long communication lasts and/or when it starts relative
to the observation period) leads to variation in diffusion potential. (D) Diffusion
simulation on the largest component of a sexual contact network described in (40)
produces similar results (right) as in (C), although the degree distribution and
cohesion properties (proportion of people connected by multiple common paths)
differ. Each line indicates the proportion ultimately infected by a random individual
(averaged over 250 trials) given the parameters of the diffusion process.
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which the processes of interest unfold. For processes
such as information diffusion, which unfold over
hours or days, stable relationships such as kinship
or friendship ties [with turnover times on the order
of years (28)] may be approximated as essentially
static. Such networks cannot be fixed in a life-cycle
context, however, inwhich one’s time scale of interest
may span several decades. Likewise, the dynamics
of rapidly evolving networks [such as radio commu-
nications during emergencies (Fig. 1C) (29)] are of
potential importance even for fast-moving processes,
such as information exchange. Failure to consider
dynamics can lead to extremely misleading results.

A useful example of where static representa-
tions can go awry is provided by the case of HIV
diffusion. Studies of sexual behavior generally
find that the number of sexual partners possessed
by a given individual over a fixed period of time
is skewed (the mean is farther out in the long tail
of the distribution than is the median) (30). Early
studies of the behavior of simple diffusion pro-
cesses on networks with extremely skewed [specif-
ically, power-law (31)] degree distributions strongly
suggested that epidemic potentials for HIV and
similar sexually transmitted diseases were primar-
ily governed by the behavior of a small number of
individuals with large numbers of sexual contacts
(32, 33). This conclusion was of considerable prac-
tical import because it implied that only hub-
targeted strategies were likely to prove efficacious
in reducing epidemic thresholds (31, 32). Although
the applicability of the power-law degree model to
these networks has since been questioned (30, 34),
equally important is the assumption that the time-
aggregated network of sexual contacts was an
effectivemodel for HIV diffusion. The timing and
duration of relationships are critical factors in the
susceptibility of the dynamic network to disease
transmission (35), factors that are hidden by the
time-aggregated representation. This can be seen
in Fig. 1D; for a given network, everyone may
become infected or no onemaybe infected, depend-
ing on the edge duration and time of onset.

Studies of diffusion on dynamic networks sug-
gest that partnership concurrency is also an impor-
tant predictor of epidemic potential; uniformly
low-degree networks potentially support epidem-
ics when relationships are long and coterminous,
and networks with high-degree nodes often fail to
support epidemics when relationships are short and
sequential (35–37). Interventions aimed at mini-
mizing concurrent links are not necessarily the
same as hub-targeted strategies, and thus the
public health recommendations that follow from
a dynamic network analysis may differ from those
that would seem reasonable based on the assump-
tion of a static, time-aggregated network.

AlthoughHIV diffusion is a compelling exam-
ple, it should be emphasized that similar issues can
arise in systems as apparently different as radio com-
munication (Fig. 1C) and peer-to-peer networks.
Recent work in the latter area, for instance, has
emphasized the impact of the entry and exit of

networkmembers (or “churn”) on system perform-
ance (38); in this case, edge dynamics (potential
and actual data transfers) can be understood only
by taking into account the dynamic nature of the
set of nodes.

Conclusion
To represent an empirical phenomenon as a net-
work is a theoretical act. It commits one to assump-
tions about what is interacting, the nature of that
interaction, and the time scale on which that in-
teraction takes place. Such assumptions are not
“free,” and indeed they can be wrong. Whether
studying protein interactions, sexual networks, or
computer systems, the appropriate choice of rep-
resentation is key to getting the correct result.
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PERSPECTIVE

Disentangling the Web of Life
Jordi Bascompte

Biodiversity research typically focuses on species richness and has often neglected interactions, either by
assuming that such interactions are homogeneously distributed or by addressing only the interactions
between a pair of species or a few species at a time. In contrast, a network approach provides a
powerful representation of the ecological interactions among species and highlights their global
interdependence. Understanding how the responses of pairwise interactions scale to entire assemblages
remains one of the great challenges that must be met as society faces global ecosystem change.

Network approaches to ecological research
emphasize the pattern of interactions
among species (the way links are ar-

ranged within the network) rather than the identity
of the species composing a community (the nodes
of the network of interactions). The idea of a com-
plex network of interactions among species is as
old as Darwin’s contemplation of the tangled

bank, showing the importance of networks in ecol-
ogy (1). Despite this early realization, however,
networks have only recently been incorporated into
mainstream ecological theories. The “web of life”
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