User Tools

Site Tools


b:head_first_statistics:estimating_populations_and_samples

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
b:head_first_statistics:estimating_populations_and_samples [2019/12/10 13:42] – [Variance of sample means] hkimscilb:head_first_statistics:estimating_populations_and_samples [2022/11/15 23:52] – [Using CLT for the binomial distribution] hkimscil
Line 17: Line 17:
 </WRAP> </WRAP>
  
-\begin{eqnarray*} +\begin{align*} 
-\overline{X} & = \frac {\sum{X}}{n} \\ +\overline{X} & = \frac {\sum{X}}{n} \\ 
-& = \frac {\sum_{i=1}^{n} X_{i}}{n} \\ +& = \frac{ \sum_{i=1}^{n} X_{i} } {n} \\ 
-& = \hat{\mu} +& = \hat{\mu} 
-\end{eqnarray*}+\end{align*}
  
 ====== Estimating population variance ====== ====== Estimating population variance ======
Line 44: Line 44:
 {{:b:head_first_statistics:pasted:20191125-103603.png}} {{:b:head_first_statistics:pasted:20191125-103603.png}}
 {{:b:head_first_statistics:pasted:20191125-103510.png}} {{:b:head_first_statistics:pasted:20191125-103510.png}}
 +
 +[[:Why N-1]]
  
 <code> <code>
Line 130: Line 132:
    
 이 때 $n = 100$일때 각각의 시도에서의 (trial) proportion 기대값은 ($\hat{P}$): 이 때 $n = 100$일때 각각의 시도에서의 (trial) proportion 기대값은 ($\hat{P}$):
-\begin{eqnarray} 
-\hat{P_{1}} & = & {E(X_{1})}/{n} = 0.34 \\ 
-\hat{P_{2}} & = & {E(X_{2})}/{n} = 0.43 \\ 
-\hat{P_{3}} & = & {E(X_{3})}/{n} = 0.32 \\ 
-\hat{P_{4}} & = & {E(X_{4})}/{n} = 0.42 \\ 
-\cdots & \cdots & \cdots              \\ 
-\hat{P_{k}} & = & {E(X_{k})}/{n} = 0.24  
-\end{eqnarray} 
  
-즉, $X \sim B(n, p)$ 일 때, sample의 확률 $P_{s} = \displaytype \frac{X}{n}$를 따른다 (X = red gumball이 나온 갯수, n = sample 크기).+\begin{align*} 
 +n = 100, \\ 
 +\hat{P_{1}} & = \frac{X_{1}}{n} = 0.34, (X_{1} = 34) \\ 
 +\hat{P_{2}} & = \frac{X_{2}}{n} = 0.43, (X_{2} = 43) \\ 
 +\hat{P_{3}} & = \frac{X_{3}}{n} = 0.32, (X_{3} = 32) \\ 
 +\hat{P_{4}} & = \frac{X_{4}}{n} = 0.42, (X_{4} = 42) \\ 
 +\cdots \cdots \cdots \\ 
 +\hat{P_{k}} & = \frac{X_{k}}{n} = 0.24, (X_{1} = 24) \\  
 +\end{align*} 
 + 
 +즉, $X \sim B(n, p)$ 일 때, sample의 확률 $P_{s} = \dfrac{X}{n}$를 따른다 ($X= red gumball이 나온 갯수, $n= sample 크기).
 {{:b:head_first_statistics:pasted:20191126-073028.png}} {{:b:head_first_statistics:pasted:20191126-073028.png}}
  
Line 224: Line 228:
 q <- 1-p q <- 1-p
 n <- 100 n <- 100
-var <- (p*q)/(n-1+var <- (p*q)/(n) 
-se  <- sqrt((p*q)/(n-1)) +se  <- sqrt((p*q)/(n)) 
-pnorm(.395, p, se, lower.tail = F)+o <.4 
 +o.c <- .4 - (1/(2*n)) 
 +o.c  
 +pnorm(o.c, p, se, lower.tail = F)
 </code> </code>
  
 <code> <code>
 +
 > p <- 0.25 > p <- 0.25
 > q <- 1-p > q <- 1-p
 > n <- 100 > n <- 100
-> var <- (p*q)/(n-1+> var <- (p*q)/(n) 
-> se  <- sqrt((p*q)/(n-1)) +> se  <- sqrt((p*q)/(n)) 
-> pnorm(.395, p, se, lower.tail = F) +> o <.4 
-[1] 0.0004313594+> o.c <- .4 - (1/(2*n)) 
 +> o.c  
 +[1] 0.395 
 +> pnorm(o.c, p, se, lower.tail = F) 
 +[1] 0.0004060586
 </code> </code>
  
Line 258: Line 270:
 \overline{X} = \frac{X_{1} + X_{2} + . . . + X_{n}}{n}  \overline{X} = \frac{X_{1} + X_{2} + . . . + X_{n}}{n} 
 \end{eqnarray*} \end{eqnarray*}
 +위는 풍선검 봉지 30개로 이루어진 샘플의 평균을 이야기하고 
 +아래는 이 평균을 계속 모았을 때의 평균을 이야기한다. 
 \begin{eqnarray*} \begin{eqnarray*}
 E(\overline{X}) & = & E\left(\frac{X_{1} + X_{2} + . . . + X_{n}}{n}\right)  \\ E(\overline{X}) & = & E\left(\frac{X_{1} + X_{2} + . . . + X_{n}}{n}\right)  \\
Line 275: Line 288:
 \end{eqnarray*} \end{eqnarray*}
  
-\begin{eqnarray*} +\begin{align*} 
-Var(\overline{X}) & = Var \left(\frac{X_{1} + X_{2} + . . . + X_{n}}{n}\right) \\ +Var(\overline{X}) & = Var \left(\frac{X_{1} + X_{2} + . . . + X_{n}}{n}\right) \\ 
-& = \frac{1}{n^2} Var \left({X_{1} + X_{2} + . . . + X_{n}\right) \\ +& = \frac {1}{n^2} Var \left(X_{1} + X_{2} + . . . + X_{n} \right) \\ 
-& = \frac{1}{n^2} (\sigma^2 + \sigma^2 + . . . + \sigma^2) \\ +& = \frac{1}{n^2} (\sigma^2 + \sigma^2 + . . . + \sigma^2) \\ 
-& = \frac{1}{n^2} n * (\sigma^2) \\ +& = \frac{1}{n^2} n * (\sigma^2) \\ 
-& = \frac{\sigma^2}{n}  +& = \frac{\sigma^2}{n}  
-\end{eqnarray*}+ 
 + 
 +\end{align*}
  
  
Line 311: Line 326:
  
 ===== Using CLT for the binomial distribution ===== ===== Using CLT for the binomial distribution =====
-$X \sim B(n, p)$, n이 30이 넘는 조건에서$\mu = np$, $\sigma^2 = npq$ 이므로 이를 $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$에 대입해 보면: +$X \sim B(n, p)$ 에서 $\mu = np$, $\sigma^2 = npq$ 이고, 
 +n이 30이 넘는 조건에서 이항분포가 정상분포를 이룬다고 하므로   
 +$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$에 대입해 보면: 
 $$\overline{X} \sim N(np, \; pq) $$ $$\overline{X} \sim N(np, \; pq) $$
  
b/head_first_statistics/estimating_populations_and_samples.txt · Last modified: 2022/11/17 12:47 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki