User Tools

Site Tools


b:head_first_statistics:estimating_populations_and_samples

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:estimating_populations_and_samples [2024/11/06 08:27] – [What about variance] hkimscilb:head_first_statistics:estimating_populations_and_samples [2025/10/08 12:20] (current) – [Sampling distribution of sample mean] hkimscil
Line 11: Line 11:
  
  
-<WRAP info 70%>+<WRAP box>
 $\hat\mu$ : See this hat I’m wearing? It means I’m a point estimator. If you don’t have the exact value of the mean, then I'm the next best thing. $\hat\mu$ : See this hat I’m wearing? It means I’m a point estimator. If you don’t have the exact value of the mean, then I'm the next best thing.
  
Line 88: Line 88:
 p = 32/40 = 0.8 p = 32/40 = 0.8
  
-<WRAP info 60%>+<WRAP box>
 Mighty Gumball takes another sample of their super-long-lasting gumballs, and finds that in the sample, 10 out of 40 people prefer the pink gumballs to all other colors. What proportion of people prefer pink gumballs in the population? What’s the probability of choosing someone from the population who doesn’t prefer pink gumballs? Mighty Gumball takes another sample of their super-long-lasting gumballs, and finds that in the sample, 10 out of 40 people prefer the pink gumballs to all other colors. What proportion of people prefer pink gumballs in the population? What’s the probability of choosing someone from the population who doesn’t prefer pink gumballs?
 </WRAP> </WRAP>
Line 390: Line 390:
  
 </code> </code>
 +위의 se는 standard deviation의 일종이므로 그 특성을 갖는다 (68, 95, 99%). 따라서 Red gumball의 비율이 1/4임을 알고 있을 때, n=100개의 gumball을 샘플링하면 (한번), red gumball의 비율은 p를 (0.25) 중심으로 위아래도 2*se 범위의 값이 나올 확률이 95%임을 안다는 것이 된다. 위에서 계산해보면; 
 +
 +<code>
 +# 위의 histogram 에서 mean 값은 이론적으로
 +p
 +# standard deviation값은 
 +se
 +
 +# 우리는 평균값에서 +- 2*sd.cal 구간이 95%인줄 안다. 
 +se2 <- se * 2
 +# 즉, 아래 구간이 
 +lower <- p-se2
 +upper <- p+se2
 +lower
 +upper
 +
 +hist(ps.k)
 +abline(v=lower, col=2, lwd=2)
 +abline(v=upper, col=2, lwd=2)
 +
 +</code>
 +즉 아래의 그래프에서 
 +{{:b:head_first_statistics:pasted:20241106-084520.png}}
 +lower: 0.1633975와 (16.33975%) upper: 0.3366025 사이에서 (33.66025%) red gumaball의 비율이 나올 확률이 95%라는 이야기. 
 +
 +그렇다면 만약에 30% 이상이 red gumball일 확률은 무엇이라는 질문이라면 
 +우리는 X ~ B(100, 1/4)에서 도출되는 
 +X ~ N(p, se) 에서 P(X>_0.3)을 구하는 질문이므로 
 +1-pnorm(0.295, p, se) 가 답이 되겠다. 
 +1-pnorm(0.295, p, se) 
 +[1] 0.1493488
 +
 ===== Exercise ===== ===== Exercise =====
-<WRAP info 60%>+<WRAP box>
 25% of the gumball population are red. What’s the probability that in a box of 100 gumballs, at least 40% will be red? We’ll guide you through the steps. 25% of the gumball population are red. What’s the probability that in a box of 100 gumballs, at least 40% will be red? We’ll guide you through the steps.
  
Line 457: Line 489:
 ====== Sampling distribution of sample mean ====== ====== Sampling distribution of sample mean ======
  
-<WRAP info 60%>+<WRAP box>
 According to Mighty Gumball’s statistics for the population, the mean number of gumballs in each packet is 10, and the variance is 1. The trouble is they’ve had a complaint. One of their most faithful customers bought 30 packets of gumballs, and he found that the average number of gumballs per packet in his sample is only 8.5. According to Mighty Gumball’s statistics for the population, the mean number of gumballs in each packet is 10, and the variance is 1. The trouble is they’ve had a complaint. One of their most faithful customers bought 30 packets of gumballs, and he found that the average number of gumballs per packet in his sample is only 8.5.
 </WRAP> </WRAP>
Line 553: Line 585:
  
 ===== Exercise ===== ===== Exercise =====
-<WRAP info 60%>+<WRAP box>
 Let’s apply this to Mighty Gumball’s problem.  Let’s apply this to Mighty Gumball’s problem. 
  
Line 590: Line 622:
  
 </code> </code>
 +====== Recap ====== 
 +Distribution of **Sample** <fc #ff0000>**P**</fc>roportion<fc #ff0000>**s**</fc>, <fc #ff0000>$Ps$</fc>, 
 +when sampling n entities (repeatedly) from a population whose proportion is p. 
 +\begin{eqnarray*} 
 +Ps & \sim & N(p,  \frac{pq}{n}) \\ 
 +\text{hence, } \\ 
 +\text{standard deviation of} \\  
 +\text{sample proportions} & = & \sqrt{\frac{pq}{n}} 
 +\end{eqnarray*} 
 +Distribution of **Sample** <fc #ff0000>Means, $\overline{X}$</fc>  
 +when sampling a sample whose size is n from a population whose mean is $\mu$ and variance is $\sigma^2$. 
 +\begin{eqnarray*} 
 +\overline{X} & \sim & N(\mu,  \frac{\sigma^2}{n}) \\ 
 +\text{hence, } \\ 
 +\text{standard deviation of} \\  
 +\text{sample means} & = &  \sqrt{\frac{\sigma^2}{n}} \\ 
 +& = &  \frac{\sigma}{\sqrt{n}} 
 +\end{eqnarray*}
b/head_first_statistics/estimating_populations_and_samples.1730849265.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki