User Tools

Site Tools


b:head_first_statistics:using_the_normal_distribution

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:using_the_normal_distribution [2025/10/08 12:06] – [Independent Observation] hkimscilb:head_first_statistics:using_the_normal_distribution [2025/10/08 12:11] (current) – [Pool Puzzle] hkimscil
Line 633: Line 633:
 Before going further:  Before going further: 
  
-<WRAP alert>+<WRAP info>
 So what’s the probability of getting 30 or more questions right out of 40? That will help us determine whether to keep playing, or walk away. So what’s the probability of getting 30 or more questions right out of 40? That will help us determine whether to keep playing, or walk away.
 </WRAP> </WRAP>
  
  
-<WRAP info>+<WRAP box>
 There are 40 questions, which means there are 40 trials.  There are 40 questions, which means there are 40 trials. 
  
Line 652: Line 652:
  
 </WRAP> </WRAP>
-<WRAP center info>+<WRAP box>
 <code> <code>
 > pbinom(29,40, 1/4, lower.tail = F) > pbinom(29,40, 1/4, lower.tail = F)
Line 777: Line 777:
 {{:b:head_first_statistics:pasted:20191118-095652.png}} {{:b:head_first_statistics:pasted:20191118-095652.png}}
  
-<WRAP info>+<WRAP box>
 이를 R을 이용하여 구하면,  이를 R을 이용하여 구하면, 
 <code> <code>
Line 844: Line 844:
 이 값은 위의 0.387에 근사하다.  이 값은 위의 0.387에 근사하다. 
  
-<WRAP info>+<WRAP box>
   * In particular circumstances you can **use the normal distribution to approximate the binomial**. If X ~ B(n, p) and np > 5 and nq > 5 then you can approximate X using X ~ N(np, npq)   * In particular circumstances you can **use the normal distribution to approximate the binomial**. If X ~ B(n, p) and np > 5 and nq > 5 then you can approximate X using X ~ N(np, npq)
   * If you’re approximating the binomial distribution with the normal distribution, then you need to **<fc #ff0000>apply a continuity correction</fc>** to make sure your results are accurate.   * If you’re approximating the binomial distribution with the normal distribution, then you need to **<fc #ff0000>apply a continuity correction</fc>** to make sure your results are accurate.
Line 851: Line 851:
 {{:b:head_first_statistics:pasted:20191118-103328.png}} {{:b:head_first_statistics:pasted:20191118-103328.png}}
  
-<WRAP info>+<WRAP box>
 Q:Does it really save time to approximate the binomial distribution with the normal? Q:Does it really save time to approximate the binomial distribution with the normal?
  
Line 874: Line 874:
 ===== Pool Puzzle ===== ===== Pool Puzzle =====
 <wrap #continuity_correction_egs /> <wrap #continuity_correction_egs />
-<WRAP help>+<WRAP box>
 X < 3  ----  <wrap spoiler> X < 2.5 </wrap> X < 3  ----  <wrap spoiler> X < 2.5 </wrap>
 X > 3  ----  <wrap spoiler> X > 3.5 </wrap> X > 3  ----  <wrap spoiler> X > 3.5 </wrap>
b/head_first_statistics/using_the_normal_distribution.1759892817.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki