beta_coefficients
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| beta_coefficients [2019/05/21 22:30] – hkimscil | beta_coefficients [2020/12/09 18:47] (current) – [e.g.] hkimscil | ||
|---|---|---|---|
| Line 3: | Line 3: | ||
| {{: | {{: | ||
| - | $$ \beta = b * \frac{sd(x)}{sd(y)} | + | \begin{align*} |
| + | \large{\beta = b * \frac{sd(x)}{sd(y)}} \ | ||
| + | \end{align*} | ||
| < | < | ||
| Line 82: | Line 84: | ||
| > | > | ||
| </ | </ | ||
| + | ====== e.g. ====== | ||
| + | |||
| + | < | ||
| + | # get marketing data | ||
| + | marketing <- read.csv(" | ||
| + | head(marketing) | ||
| + | # note that I need - X to get rid of X column in the marketing data | ||
| + | mod <- lm(sales ~ . - X, data=marketing) | ||
| + | summary(mod) | ||
| + | </ | ||
| + | |||
| + | < | ||
| + | > marketing <- read.csv(" | ||
| + | > head(marketing) | ||
| + | X youtube facebook newspaper sales | ||
| + | 1 1 276.12 | ||
| + | 2 2 | ||
| + | 3 3 | ||
| + | 4 4 181.80 | ||
| + | 5 5 216.96 | ||
| + | 6 6 | ||
| + | # note that I need - X to get rid of X column in the marketing data | ||
| + | > mod <- lm(sales ~ . - X, data=marketing) | ||
| + | > summary(mod) | ||
| + | |||
| + | Call: | ||
| + | lm(formula = sales ~ . - X, data = marketing) | ||
| + | |||
| + | Residuals: | ||
| + | | ||
| + | -10.5932 | ||
| + | |||
| + | Coefficients: | ||
| + | | ||
| + | (Intercept) | ||
| + | youtube | ||
| + | facebook | ||
| + | newspaper | ||
| + | --- | ||
| + | Signif. codes: | ||
| + | |||
| + | Residual standard error: 2.023 on 196 degrees of freedom | ||
| + | Multiple R-squared: | ||
| + | F-statistic: | ||
| + | </ | ||
| + | |||
| + | |||
| + | |||
| + | < | ||
| + | install.packages(lm.beta) | ||
| + | library(lm.beta) | ||
| + | lm.beta(mod) | ||
| + | </ | ||
| + | |||
| + | < | ||
| + | lm.beta(mod) | ||
| + | |||
| + | Call: | ||
| + | lm(formula = sales ~ . - X, data = marketing) | ||
| + | |||
| + | Standardized Coefficients:: | ||
| + | | ||
| + | | ||
| + | > | ||
| + | </ | ||
| + | |||
| + | These beta coefficients also can be got from the coefficents from standardized data. | ||
| + | |||
| + | < | ||
| + | mod.formula <- sales ~ youtube + facebook + newspaper | ||
| + | all.vars(mod.formula) | ||
| + | marketing.temp <- sapply(marketing[ , all.vars(mod.formula)], | ||
| + | head(marketing.temp) | ||
| + | mod.scaled <- lm(sales ~ ., data=marketing.scaled) | ||
| + | head(marketing.scaled) | ||
| + | coefficients(mod.scaled) | ||
| + | </ | ||
| + | |||
| + | < | ||
| + | > all.vars(mod.formula) | ||
| + | [1] " | ||
| + | > marketing.temp <- sapply(marketing[ , all.vars(mod.formula)], | ||
| + | > head(marketing.temp) | ||
| + | sales | ||
| + | [1,] 1.5481681 | ||
| + | [2,] -0.6943038 -1.19437904 | ||
| + | [3,] -0.9051345 -1.51235985 | ||
| + | [4,] 0.8581768 | ||
| + | [5,] -0.2151431 | ||
| + | [6,] -1.3076295 -1.61136487 | ||
| + | > mod.scaled <- lm(sales ~ ., data=marketing.scaled) | ||
| + | > head(marketing.scaled) | ||
| + | | ||
| + | 1 1.5481681 | ||
| + | 2 -0.6943038 -1.19437904 | ||
| + | 3 -0.9051345 -1.51235985 | ||
| + | 4 0.8581768 | ||
| + | 5 -0.2151431 | ||
| + | 6 -1.3076295 -1.61136487 | ||
| + | > coefficients(mod.scaled) | ||
| + | (Intercept) | ||
| + | -5.034110e-16 | ||
| + | > | ||
| + | > </ | ||
| + | |||
| + | check out that | ||
| + | '' | ||
| + | |||
| + | and | ||
| + | 베타를 구하고 나면 서로의 계수값을 절대비교할 수 있다. | ||
| + | '' | ||
| + | '' | ||
| + | |||
beta_coefficients.1558445455.txt.gz · Last modified: by hkimscil
