User Tools

Site Tools


estimated_standard_deviation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
estimated_standard_deviation [2025/09/05 22:21] – [output] hkimscilestimated_standard_deviation [2025/09/07 06:24] (current) – [수학적 증명] hkimscil
Line 465: Line 465:
 tail(vs) tail(vs)
  
-plot(msrs) +plot(vs, msrs, type='b')
-plot(vs)+
  
 # scaled # scaled
Line 477: Line 476:
 v.orig <- (v*sd(x))+mean(x)  v.orig <- (v*sd(x))+mean(x) 
 v.orig v.orig
 +
 +plot(vs.orig, msrs, type='b')
  
 </code> </code>
Line 528: Line 529:
   * gradient function과   * gradient function과
   * learning_rate 값이다.    * learning_rate 값이다. 
-gradient 펑션은 dy/dv 의 연쇄 미분식인 ([[:chain rules]]) -2(x-v) / n = -2 mean(res) 값을 구하는 것이다. 이렇게 구한 값에 learning_rate값을 곱한후, 이것을 먼저 사용한 v값에서 (빨간색 지점) 빼 주어 다음 v값으로 (녹색지점) 사용하려고 한다. 이 녹색지점에서의 v값을 사용했을 때의 gradient값을 구한 후 다시 이값에 learning_rate인 0.1을 곱하여 그 다음 v값을 구하여 사용한다. 이렇게 구하는 v값들은 0.1씩 곱해주는 효과때문에 오른 쪽으로 옮겨가는 지점이 "<fc #ff0000>**점진적으로 줄어들게 되고**</fc>" 이 지점이 msr의 최소값이 되는 지점으로 가게 된다. +gradient 펑션은 dy/dv 의 연쇄 미분식인 ([[:chain rules]]) -2(x-v) / n = -2 mean(res) 값을 구하는 것이다. 이렇게 구한 값에 learning_rate값을 곱한후, 이것을 먼저 사용한 v값에서 (빨간색 지점) 빼 주어 다음 v값으로 (녹색지점) 사용하려고 한다. 이 녹색지점에서의 v값을 사용했을 때의 gradient값을 구한 후 다시 이값에 learning_rate인 0.1을 곱하여 그다음 스텝의 값을 얻고, 이 값을 바로 전의 v값에서 빼 준 값을 그 다음 v값으로 사용한다. 이렇게 구하는 v값들은 0.1씩 곱해주는 효과때문에 오른 쪽으로 옮겨가는 지점이 "<fc #ff0000>**점진적으로 줄어들게 되고**</fc>" 이 지점이 msr의 최소값이 되는 지점으로 가게 된다. 
  
 {{:pasted:20250905-202627.png}} {{:pasted:20250905-202627.png}}
Line 669: Line 670:
 > v.orig > v.orig
 [1] 50 [1] 50
 +>
 +> plot(vs.orig, msrs, type='b')
  
  
Line 676: Line 679:
 <WRAP half column> <WRAP half column>
 comment comment
 +{{:pasted:20250905-231742.png}}
 +
 +만약에 처음에 구한 랜덤 v값이 평균의 오른 쪽에있었더라면, 아래 그림과 같이 평균에 접근했을 것이다.
 +{{:pasted:20250905-231513.png}}
 </WRAP> </WRAP>
 </WRAP> </WRAP>
Line 799: Line 806:
 \end{eqnarray*} \end{eqnarray*}
  
-즉, 원래 $\sigma^2$ 값보다 조금 작은 값을 갖게 될 것이다 (이를 biased result라고 한다).+즉, 원래 $\sigma^2$ 값보다 조금 작은 값을 갖게 될 것이다 (이를 biased result라고 한다). 따라서 샘플을 취한 후에 모집단의 분산을 추정할 때에는 n 대신에 n-1을 사용하는 것이 맞다. 그렇다면 모집단의 분산을 구할 때는 n으로 (N으로) 나누어 주면 된다고 생각된다. 그러나 일반적으로 모집단의 분산을 구할 때에도 N-1로 나누어 구하게 된다. 이유는 모집단의 경우에 N이 충분히 큰 경우인데 이 때에는 N으로 나누어 주나, N-1로 나누어주나 큰 차이가 없기 때문이다. 따라서, R에서 분산을 구하는 var(x)에는 x의 성격에 상관없이 SS를 n-1로 나누어 분산을 구하게 된다.
  
  
estimated_standard_deviation.1757078494.txt.gz · Last modified: 2025/09/05 22:21 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki