estimated_standard_deviation
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
estimated_standard_deviation [2025/09/05 23:15] – [output] hkimscil | estimated_standard_deviation [2025/09/07 06:24] (current) – [수학적 증명] hkimscil | ||
---|---|---|---|
Line 465: | Line 465: | ||
tail(vs) | tail(vs) | ||
- | plot(msrs) | + | plot(vs, msrs, type=' |
- | plot(vs) | + | |
# scaled | # scaled | ||
Line 477: | Line 476: | ||
v.orig <- (v*sd(x))+mean(x) | v.orig <- (v*sd(x))+mean(x) | ||
v.orig | v.orig | ||
+ | |||
+ | plot(vs.orig, | ||
</ | </ | ||
Line 678: | Line 679: | ||
<WRAP half column> | <WRAP half column> | ||
comment | comment | ||
+ | {{: | ||
+ | |||
+ | 만약에 처음에 구한 랜덤 v값이 평균의 오른 쪽에있었더라면, | ||
{{: | {{: | ||
</ | </ | ||
Line 802: | Line 806: | ||
\end{eqnarray*} | \end{eqnarray*} | ||
- | 즉, 원래 $\sigma^2$ 값보다 조금 작은 값을 갖게 될 것이다 (이를 biased result라고 한다). | + | 즉, 원래 $\sigma^2$ 값보다 조금 작은 값을 갖게 될 것이다 (이를 biased result라고 한다). 따라서 샘플을 취한 후에 모집단의 분산을 추정할 때에는 n 대신에 n-1을 사용하는 것이 맞다. 그렇다면 모집단의 분산을 구할 때는 n으로 (N으로) 나누어 주면 된다고 생각된다. 그러나 일반적으로 모집단의 분산을 구할 때에도 N-1로 나누어 구하게 된다. 이유는 모집단의 경우에 N이 충분히 큰 경우인데 이 때에는 N으로 나누어 주나, N-1로 나누어주나 큰 차이가 없기 때문이다. 따라서, R에서 분산을 구하는 var(x)에는 x의 성격에 상관없이 SS를 n-1로 나누어 분산을 구하게 된다. |
estimated_standard_deviation.1757081725.txt.gz · Last modified: 2025/09/05 23:15 by hkimscil