johnson_s_hierarchical_clustering
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| johnson_s_hierarchical_clustering [2016/11/21 09:09] – hkimscil | johnson_s_hierarchical_clustering [2016/11/21 12:45] (current) – [E.g. 1] hkimscil | ||
|---|---|---|---|
| Line 99: | Line 99: | ||
| {{: | {{: | ||
| + | < | ||
| + | -------------------------------------------------------------------------------- | ||
| + | |||
| + | Method: | ||
| + | Type of Data: | ||
| + | Input dataset: | ||
| + | |||
| + | HIERARCHICAL CLUSTERING | ||
| + | |||
| + | M S | ||
| + | I E S L O N D H E | ||
| + | A A F A S Y C I N | ||
| + | |||
| + | Level 4 6 7 8 1 2 3 5 9 | ||
| + | ----- - - - - - - - - - | ||
| + | 206 . . . . XXX . . . | ||
| + | 233 . . . . XXXXX . . | ||
| + | 379 . . XXX XXXXX . . | ||
| + | 671 . . XXX XXXXXXX . | ||
| + | 808 . XXXXX XXXXXXX . | ||
| + | 996 . XXXXX XXXXXXXXX | ||
| + | | ||
| + | | ||
| + | |||
| + | |||
| + | |||
| + | Measures of cluster adequacy | ||
| + | |||
| + | 1 2 3 4 5 6 7 | ||
| + | | ||
| + | 1 | ||
| + | 2 | ||
| + | 3 Q-prime | ||
| + | 4 | ||
| + | |||
| + | |||
| + | Size of each cluster, expressed as a proportion of the total population clustered | ||
| + | |||
| + | | ||
| + | ----- ----- ----- ----- ----- ----- ----- ----- | ||
| + | 1 CL1 0.222 0.333 0.333 0.111 0.111 0.111 0.111 1.000 | ||
| + | 2 CL2 0.111 0.111 0.111 0.444 0.444 0.333 0.889 | ||
| + | 3 CL3 0.111 0.111 0.111 0.111 0.333 0.556 | ||
| + | 4 CL4 0.111 0.111 0.111 0.222 0.111 | ||
| + | 5 CL5 0.111 0.111 0.222 0.111 | ||
| + | 6 CL6 0.111 0.111 0.111 | ||
| + | 7 CL7 0.111 0.111 | ||
| + | 8 CL8 0.111 | ||
| + | |||
| + | Actor-by-Partition indicator matrix saved as dataset Part | ||
| + | |||
| + | ---------------------------------------- | ||
| + | Running time: 00:00:01 | ||
| + | Output generated: | ||
| + | UCINET 6.614 Copyright (c) 1992-2016 Analytic Technologies | ||
| + | |||
| + | </ | ||
| + | |||
| + | {{hiclus2.gif}} | ||
| + | {{hiclus4.gif}} | ||
| + | |||
| + | ====== E.g. 1 ====== | ||
| + | <code csv cities2.csv> | ||
| + | 206 0 233 1308 802 2815 2934 2786 1771 | ||
| + | 429 233 0 1075 671 2684 2799 2631 1616 | ||
| + | 1504 1308 1075 0 1329 3273 3053 2687 2037 | ||
| + | 963 802 671 1329 0 2013 2142 2054 996 | ||
| + | 2976 2815 2684 3273 2013 0 808 1131 1307 | ||
| + | 3095 2934 2799 3053 2142 808 0 379 1235 | ||
| + | 2979 2786 2631 2687 2054 1131 379 0 1059 | ||
| + | 1949 1771 1616 2037 996 1307 1235 1059 0 | ||
| + | |||
| + | </ | ||
| + | |||
| + | # Prepare Data | ||
| + | setwd(" | ||
| + | mydata <- read.csv(" | ||
| + | mydata <- na.omit(mydata) # listwise deletion of missing | ||
| + | mydata <- scale(mydata) # standardize variables | ||
| + | |||
johnson_s_hierarchical_clustering.1479686999.txt.gz · Last modified: by hkimscil
