logit_analysis
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| logit_analysis [2019/09/15 02:50] – hkimscil | logit_analysis [2019/09/18 07:56] (current) – removed hkimscil | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | ====== logit analysis ====== | ||
| - | < | ||
| - | mydata <- read.csv(" | ||
| - | ## view the first few rows of the data | ||
| - | head(mydata) | ||
| - | </ | ||
| - | |||
| - | < | ||
| - | admit gre gpa rank | ||
| - | 1 0 380 3.61 3 | ||
| - | 2 1 660 3.67 3 | ||
| - | 3 1 800 4.00 1 | ||
| - | 4 1 640 3.19 4 | ||
| - | 5 0 520 2.93 4 | ||
| - | 6 1 760 3.00 2 | ||
| - | </ | ||
| - | |||
| - | < | ||
| - | </ | ||
| - | |||
| - | < | ||
| - | | ||
| - | | ||
| - | 1st Qu.: | ||
| - | | ||
| - | | ||
| - | 3rd Qu.: | ||
| - | | ||
| - | </ | ||
| - | |||
| - | < | ||
| - | sapply(mydata, | ||
| - | </ | ||
| - | |||
| - | < | ||
| - | | ||
| - | 0.3175 587.7000 | ||
| - | > sapply(mydata, | ||
| - | admit | ||
| - | 0.4660867 115.5165364 | ||
| - | > </ | ||
| - | |||
| - | < | ||
| - | |||
| - | < | ||
| - | rank | ||
| - | admit 1 2 3 4 | ||
| - | 0 28 97 93 55 | ||
| - | 1 33 54 28 12 | ||
| - | </ | ||
| - | |||
| - | < | ||
| - | mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = " | ||
| - | summary(mylogit) | ||
| - | </ | ||
| - | |||
| - | < | ||
| - | Call: | ||
| - | glm(formula = admit ~ gre + gpa + rank, family = " | ||
| - | data = mydata) | ||
| - | |||
| - | Deviance Residuals: | ||
| - | Min | ||
| - | -1.6268 | ||
| - | |||
| - | Coefficients: | ||
| - | | ||
| - | (Intercept) -3.989979 | ||
| - | gre 0.002264 | ||
| - | gpa 0.804038 | ||
| - | rank2 | ||
| - | rank3 | ||
| - | rank4 | ||
| - | --- | ||
| - | Signif. codes: | ||
| - | |||
| - | (Dispersion parameter for binomial family taken to be 1) | ||
| - | |||
| - | Null deviance: 499.98 | ||
| - | Residual deviance: 458.52 | ||
| - | AIC: 470.52 | ||
| - | |||
| - | Number of Fisher Scoring iterations: 4 | ||
| - | |||
| - | > </ | ||
| - | |||
| - | < | ||
| - | > confint(mylogit) | ||
| - | Waiting for profiling to be done... | ||
| - | 2.5 % 97.5 % | ||
| - | (Intercept) -6.2716202334 -1.792547080 | ||
| - | gre 0.0001375921 | ||
| - | gpa 0.1602959439 | ||
| - | rank2 | ||
| - | rank3 | ||
| - | rank4 | ||
| - | > | ||
| - | </ | ||
| - | |||
| - | < | ||
| - | > confint.default(mylogit) | ||
| - | 2.5 % 97.5 % | ||
| - | (Intercept) -6.2242418514 -1.755716295 | ||
| - | gre 0.0001202298 | ||
| - | gpa 0.1536836760 | ||
| - | rank2 | ||
| - | rank3 | ||
| - | rank4 | ||
| - | </ | ||
| - | |||
| - | < | ||
| - | |||
| - | < | ||
| - | wald.test(b = coef(mylogit), | ||
| - | </ | ||
| - | |||
logit_analysis.1568483409.txt.gz · Last modified: by hkimscil
