User Tools

Site Tools


mean_and_variance_of_geometric_distribution

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mean_and_variance_of_geometric_distribution [2023/10/17 20:32] hkimscilmean_and_variance_of_geometric_distribution [2023/10/18 17:33] (current) hkimscil
Line 32: Line 32:
 (1-(1-p))E(X) & = \underline{p} \left[1 + \underline{(1-p)} + \underline{(1-p)^2} + \underline{(1-p)^3} + \underline{(1-p)^4} + . . . \right] \\ (1-(1-p))E(X) & = \underline{p} \left[1 + \underline{(1-p)} + \underline{(1-p)^2} + \underline{(1-p)^3} + \underline{(1-p)^4} + . . . \right] \\
 & = \sum_{k=0}^{\infty} \left(p \cdot (1-p)^{k} \right) \\ & = \sum_{k=0}^{\infty} \left(p \cdot (1-p)^{k} \right) \\
-(1-(1-p))E(X) & = p \frac {1 - (1-p)^k} {1-(1-p)}, \;\;\; \text{because  } {(1-p)^k -> 0} \\ +(1-(1-p))E(X) & = p \frac {1 - (1-p)^k} {1-(1-p)}, \;\;\; \text{because  } {(1-p)^k \rightarrow 0} \\ 
 & = p \frac {1}{1-(1-p)} \\ & = p \frac {1}{1-(1-p)} \\
 p \cdot E(X) & = 1 \\ p \cdot E(X) & = 1 \\
Line 41: Line 41:
  
 ====== Variance ====== ====== Variance ======
 +For (1), see 
 +[[Expected value and variance properties#mjx-eqn-var.theorem.1|Variance Theorem 1]] in [[Expected value and variance properties]]
 \begin{align} \begin{align}
 Var(X) & = E((X-E(X))^{2}) \nonumber \\ Var(X) & = E((X-E(X))^{2}) \nonumber \\
Line 65: Line 67:
 \end{align} \end{align}
  
-위에서 $ (6) - (7) = $ 은+위에서 $ (7) - (8) = $ 은
  
 \begin{align} \begin{align}
Line 92: Line 94:
 \end{eqnarray*} \end{eqnarray*}
  
-따라서 $(5)$ 는+따라서 $(9)$ 는
 \begin{eqnarray*} \begin{eqnarray*}
 E(X^{2})  E(X^{2}) 
Line 108: Line 110:
 이는 기하분포의 평균에서 p가 생략된 것과 같다. 이는 기하분포의 평균에서 p가 생략된 것과 같다.
 \begin{align*} \begin{align*}
-\left(E(X) = \right) \sum_{k=1}^{n} k (1-p)^{k-1} \cdot p & = \frac{1}{p} \\+E(X) = \sum_{k=1}^{n} k (1-p)^{k-1} \cdot p & = \frac{1}{p} \\
 \sum_{k=1}^{n} k (1-p)^{k-1} & = \frac{1}{p^2} \\ \sum_{k=1}^{n} k (1-p)^{k-1} & = \frac{1}{p^2} \\
 \\ \\
Line 118: Line 120:
 \end{eqnarray*} \end{eqnarray*}
  
-n이 무한대로 간다고 생각하면 ([[:geometric sequences and sums]] 참조)+n이 무한대로 간다고 생각하면 ([[:geometric sequences and sums]] 참조)
 \begin{eqnarray*} \begin{eqnarray*}
 \sum_{k=1}^{\infty} ar^{k-1} & = & a \frac{1-r^n}{1-r} \\  \sum_{k=1}^{\infty} ar^{k-1} & = & a \frac{1-r^n}{1-r} \\ 
 a=1; r = (1-p); \\ a=1; r = (1-p); \\
 \sum_{k=1}^{\infty} (1-p)^{k-1} & = & \frac{1-(1-p)^n}{1-(1-p)} \\  \sum_{k=1}^{\infty} (1-p)^{k-1} & = & \frac{1-(1-p)^n}{1-(1-p)} \\ 
-(1-p)^n -> 0 ; \\+(1-p)^n \rightarrow 0 ; \\
 & = & \frac{1}{p} & = & \frac{1}{p}
 \end{eqnarray*} \end{eqnarray*}
Line 132: Line 134:
 \\ \\
 \end{eqnarray*} \end{eqnarray*}
 +
 +따라서 
  
 \begin{eqnarray*} \begin{eqnarray*}
mean_and_variance_of_geometric_distribution.1697542337.txt.gz · Last modified: 2023/10/17 20:32 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki