User Tools

Site Tools


mean_and_variance_of_poisson_distribution

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mean_and_variance_of_poisson_distribution [2020/11/21 01:27] – [Variance] hkimscilmean_and_variance_of_poisson_distribution [2020/11/21 02:22] (current) hkimscil
Line 1: Line 1:
 +====== Mean and Variance of Poisson Distribution ======
 ====== Mean ====== ====== Mean ======
 Mean Poisson distribution = $\lambda$ Mean Poisson distribution = $\lambda$
-====== Variance ======+ 
 +Poisson Distribution 
 +\begin{eqnarray*} 
 +P(X=x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!} \\ 
 +\end{eqnarray*} 
 +혹은 
 +\begin{eqnarray*} 
 +P(x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!} \\ 
 +\end{eqnarray*} 
 + 
 +우선 Taylor series을 이용하면 
 +\begin{eqnarray*} 
 +e^{a} = \sum_{y=0}^{\infty} \frac{a^y}{y!} \\ 
 +\end{eqnarray*} 
 +임을 알고 있다.  
 + 
 +\begin{eqnarray*} 
 +E(X) & = & \sum_{x} xp(X=x) \\ 
 +\text{or }  \\ 
 +E(X) & = & \sum_{x} xp(x) \\ 
 +\end{eqnarray*} 
 +Poisson distribution 을 다루고 있으므로   
 +\begin{eqnarray*} 
 +E(X) & = & \sum_{x=0}^{\infty} x \cdot  \frac{e^{-\lambda} \cdot \lambda^x}{x!} \\ 
 +& = & e^{-\lambda} \cdot \sum_{x=0}^{\infty} x \cdot  \frac{\lambda^x}{x!} \\ 
 +& = & e^{-\lambda} \cdot \sum_{x=0}^{\infty} x \cdot  \frac{\lambda^x}{x(x-1)!} \\ 
 +& = & e^{-\lambda} \cdot \sum_{x=1}^{\infty} x \cdot  \frac{\lambda \cdot \lambda^{x-1}}{x(x-1)!} \\ 
 +& = & \lambda \cdot e^{-\lambda} \cdot \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} \\ 
 +\text{let y = x-1} & \\ 
 +& = & \lambda \cdot e^{-\lambda} \cdot \sum_{y=0}^{\infty} \frac{\lambda^{y}}{(y)!} \\ 
 +& = & \lambda \cdot e^{-\lambda} \cdot \underline{\sum_{y=0}^{\infty} \frac{\lambda^{y}}{(y)!}} \\ 
 +\text{recall: } \; \\  
 +e^{a} = \sum_{y=0}^{\infty} \frac{a^y}{y!} \\ 
 +& = & \lambda \cdot e^{-\lambda} \cdot e^{\lambda} \\ 
 +& = & \lambda \\ 
 +\end{eqnarray*} 
 + 
 + 
 + 
 + 
 + 
 + ====== Variance ====== 
 +Variance는 위의 binomial 케이스처럼 좀 복잡하다. 
 Variance of Poisson distribution = $\lambda$ Variance of Poisson distribution = $\lambda$
 +
 +\begin{eqnarray*}
 +Var(X) & = & E \left[(X-\mu)^2 \right] \\
 +& = & \sum_{x=1}^{n}(x-\mu)^2 \cdot p(x) \\
 +\end{eqnarray*}
 +
 +또한 
 +\begin{eqnarray*}
 +E \left[(X-\mu)^2 \right] 
 +& = & E(X^2) - \left[E(X) \right]^2 \\
 +\end{eqnarray*}
 +
 +이 중에서 우선 $E(X^2)$을 우선 다루면
 +\begin{eqnarray*}
 +E(X^2) & = & \sum_{x=1}^{n}x^2 \cdot p(x) \\
 +& = & \sum_{x=1}^{n}x^2 \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}\\
 +& = & e^{-\lambda} \cdot \sum_{x=1}^{n}x^2 \cdot \frac{\lambda^{x}}{x!}\\
 +\end{eqnarray*}
 +
 +이상태로는 $X^2$를 없앨 수는 없으므로 계산을 우회하기로 하면
 +
 +\begin{eqnarray*}
 +E[X(X-1)] & = & \sum_{x=0}^{\infty} x(x-1) \cdot p(x) \\
 +& = & \sum_{x=0}^{\infty} x(x-1) \cdot \frac{e^{-\lambda} \cdot \lambda^{x}} {x!} \\
 +& = & e^{-\lambda} \cdot \sum_{x=2}^{n} x(x-1) \cdot \frac{\lambda^{x}}{x(x-1) \cdot (x-2)!} \\
 +& = & e^{-\lambda} \cdot \sum_{x=2}^{n} \frac{\lambda^{x}}{(x-2)!} \\
 +& = & e^{-\lambda} \cdot \sum_{x=2}^{n} \frac{\lambda^2 \cdot \lambda^{x-2}}{(x-2)!} \\
 +& = & \lambda^2 \cdot e^{-\lambda} \cdot \sum_{x=2}^{n} \frac{\lambda^{x-2}}{(x-2)!} \\
 +\text{let } \; y = x-2 \\
 +& = & \lambda^2 \cdot e^{-\lambda} \cdot \underline{\sum_{y=0}^{n} \frac{\lambda^{y}}{y!}} \\
 +& = & \lambda^2 \cdot e^{-\lambda} \cdot \underline{\sum_{y=0}^{n} \frac{\lambda^{y}}{y!}} \\
 +\text{underlined part } = e^{\lambda} \\
 +& = & \lambda^2 \cdot e^{-\lambda} \cdot e^{\lambda} \\
 +& = & \lambda^2 
 +\end{eqnarray*}
 +
 +따라서 
 +\begin{eqnarray*}
 +E[X(X-1)] & = & E[X^2-X] = E(X^2) - E(X) \\
 +& = & \lambda^2  \\
 +E(X^2) & = & \lambda^2 + \lambda \\
 +\end{eqnarray*}
 +
 +다시 원래대로 돌아가서
 +\begin{eqnarray*}
 +Var(X) & = & E \left[(X-\mu)^2 \right]  \\
 +& = & E(X^2) - \left[E(X) \right]^2 \\
 +& = & \lambda^2 + \lambda - \lambda^2 \\
 +& = & \lambda 
 +\end{eqnarray*}
 +
 +
 +
  
mean_and_variance_of_poisson_distribution.1605889673.txt.gz · Last modified: 2020/11/21 01:27 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki