User Tools

Site Tools


mediation_analysis

This is an old revision of the document!


Mediation Analysis

Planned behavior 이론에 따라서 연구자는 아래와 같은 모델을 만들고 데이터를 얻은 후 테스트하려고 한다. 특히 이 단계에서 연구자는 Attitudes가 Behavior 미치는 영향력을 Attitudes 고유의 것과 Intention을 거쳐가는 것으로 구분하여 확인해보려고 한다. 이와 같은 통계검증 방식을 mediation analysis라고 하는데 . . . .
보통 lavaan package를 활용하여 (path analysis를 위해서 개발) mediator 변인의 효과와 두 독립변인의 공통효과를 알아낸다.

            -- Intention --    
        a --               -- b
        --                    --
Attitudes  --------c'---------   Behavior

위의 그림에서 attitudes 가 behavior 미치는 영향력을 볼 때

  • c' = 0 인 경우가 있다. 이 경우에 attitudes는 behavior에 대한 직접적인 영향력은 없고 오로지 a 와 b의 path만을 거쳐서 영향력을 (설명력을) 갖게 된다. 이 경우를 완전매개라고 (complete mediation) 한다
  • 반면에 c' ~= 0 인 경우가 있다. 이 때는 c에도 부분적으로 설명력이 걸리고, a b를 통해서도 부분적으로 설명력이 걸리는 경우이므로 부분매개라고 (partial mediation) 부른다.

또한 mediation analysis에서 독립변인들의 효과를 (설명력을) 직접효과와 간접효과로 나눌 수 있는데 직접효과는 a, b, 그리고 c'를 직접효과라고 (direct effects) 하고 a와 b를 거쳐서 가는 효과를 간접효과라고 (indirect effects) 한다. Indirect effects 의 크기를 어떻게 측정하는가에는 여러가지 방법이 있을 수 있지만, 가장 많이 쓰이는 방법으로는

  • a path와 b path의 coefficient값을 곱한 값을 취하는 방법이다
  • 다른 방법으로는 b - a 값을 취하는 방법이 있지만 흔하지는 않다

위에서 a b 를 곱해서 간접효과를 측정할 때에 그 값이 (효과가) significant한지 알아보기 위한 테스트에는 두 가지 방법이 있을 수 있는데

  • Delta method와 Resampling method 이다
  • 전자는 indirect coefficient의 (곱한 값의) sampling distribution이 normal distribution을 이룬다는 전제하에 구하는 방법인데, 이런 경우가 드문 편이라 현실적이지 않은 면이 있다. 또한 샘플사이즈가 작을 때에는 부정확한 면이 있다
  • 후자인 resampling method는 샘플링을 반복해서 indirect coefficient 값을 얻은 후에 이를 가지고 효과를 측정하는 경우이다.
    • Percentile bootstrapping
    • bias-corrected bootstrapping
    • permutation method
    • monte carlo method 등을 사용한다.
######################################################
## data file: PlannedBehavior.csv
######################################################
######################################################
install.packages("readr")
library(readr)
df <- read.csv("http://commres.net/wiki/_media/r/plannedbehavior.csv")
head(df)
str(df)
# attitude
# norms
# control
# intention
# behavior
######################################################
######################################################
######################################################
# Mediation Analysis using lavaan 
# in R (path analysis framework, SEM)
######################################################
######################################################
######################################################

# specifying path analysis model 
# by using lavann package
install.packages("lavann")
library(lavaan)

specmod <- "
    # path c
    # identifying path c (prime) by putting c*
    behavior ~ c*attitude

    # path a
    intention ~ a*attitude

    # path b 
    behavior ~ b*intention
    
    # indirect effect (a*b): Sobel test (Delta Method)
    # 간접효과 a path x b path 를 구해서 얻음
    # sobel test 라 부름
    ab := a*b
"
# Fit/estimate the model
fitmod <- sem(specmod, data=df)
# summarize the model
summary(fitmod, fit.measures=TRUE, rsquare=T)

##########################################
# boot strapping instead of sobel test 
##########################################
set.seed(101)
fitmod2 <- sem(specmod, data=df, 
               se="bootstrap", 
               bootstrap=100)
# bootstrap = 5000 is common

summary(fitmod2, fit.measures=TRUE, rsquare=TRUE)
parameterEstimates(fitmod2, 
                   ci=TRUE, level=.95, 
                   boot.ci.type="perc")

output

 
> ######################################################
> ## data file: PlannedBehavior.csv
> ######################################################
> ######################################################
> install.packages("readr")
Error in install.packages : Updating loaded packages
> library(readr)
> df <- read.csv("http://commres.net/wiki/_media/r/plannedbehavior.csv")
> head(df)
  attitude norms control intention behavior
1     2.31  2.31    2.03      2.50     2.62
2     4.66  4.01    3.63      3.99     3.64
3     3.85  3.56    4.20      4.35     3.83
4     4.24  2.25    2.84      1.51     2.25
5     2.91  3.31    2.40      1.45     2.00
6     2.99  2.51    2.95      2.59     2.20
> str(df)
'data.frame':	199 obs. of  5 variables:
 $ attitude : num  2.31 4.66 3.85 4.24 2.91 2.99 3.96 3.01 4.77 3.67 ...
 $ norms    : num  2.31 4.01 3.56 2.25 3.31 2.51 4.65 2.98 3.09 3.63 ...
 $ control  : num  2.03 3.63 4.2 2.84 2.4 2.95 3.77 1.9 3.83 5 ...
 $ intention: num  2.5 3.99 4.35 1.51 1.45 2.59 4.08 2.58 4.87 3.09 ...
 $ behavior : num  2.62 3.64 3.83 2.25 2 2.2 4.41 4.15 4.35 3.95 ...
> # attitude
> # norms
> # control
> # intention
> # behavior
> ######################################################
> ######################################################
> ######################################################
> # Mediation Analysis using lavaan 
> # in R (path analysis framework, SEM)
> ######################################################
> ######################################################
> ######################################################
> 
> # specifying path analysis model 
> # by using lavann package
> install.packages("lavann")
‘C:/Users/Hyo/Documents/R/win-library/4.1’의 위치에 패키지(들)을 설치합니다.
(왜냐하면 ‘lib’가 지정되지 않았기 때문입니다)
Warning in install.packages :
  package ‘lavann’ is not available for this version of R

A version of this package for your version of R might be available elsewhere,
see the ideas at
https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Installing-packages
> library(lavaan)
> 
> specmod <- "
+     # path c
+     # identifying path c (prime) by putting c*
+     behavior ~ c*attitude
+ 
+     # path a
+     intention ~ a*attitude
+ 
+     # path b 
+     behavior ~ b*intention
+     
+     # indirect effect (a*b): Sobel test (Delta Method)
+     # 간접효과 a path x b path 를 구해서 얻음
+     # sobel test 라 부름
+     ab := a*b
+ "
> # Fit/estimate the model
> fitmod <- sem(specmod, data=df)
> # summarize the model
> summary(fitmod, fit.measures=TRUE, rsquare=T)
lavaan 0.6-9 ended normally after 11 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         5
                                                      
  Number of observations                           199
                                                      
Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Model Test Baseline Model:

  Test statistic                               103.700
  Degrees of freedom                                 3
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -481.884
  Loglikelihood unrestricted model (H1)       -481.884
                                                      
  Akaike (AIC)                                 973.767
  Bayesian (BIC)                               990.234
  Sample-size adjusted Bayesian (BIC)          974.393

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value RMSEA <= 0.05                             NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  behavior ~                                          
    attitude   (c)    0.029    0.071    0.412    0.680
  intention ~                                         
    attitude   (a)    0.484    0.058    8.333    0.000
  behavior ~                                          
    intention  (b)    0.438    0.075    5.832    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .behavior          0.698    0.070    9.975    0.000
   .intention         0.623    0.062    9.975    0.000

R-Square:
                   Estimate
    behavior          0.199
    intention         0.259

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    ab                0.212    0.044    4.778    0.000

> 
> ##########################################
> # boot strapping instead of sobel test 
> ##########################################
> set.seed(101)
> fitmod2 <- sem(specmod, data=df, 
+                se="bootstrap", 
+                bootstrap=100)
> # bootstrap = 5000 is common
> 
> summary(fitmod2, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6-9 ended normally after 11 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         5
                                                      
  Number of observations                           199
                                                      
Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Model Test Baseline Model:

  Test statistic                               103.700
  Degrees of freedom                                 3
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -481.884
  Loglikelihood unrestricted model (H1)       -481.884
                                                      
  Akaike (AIC)                                 973.767
  Bayesian (BIC)                               990.234
  Sample-size adjusted Bayesian (BIC)          974.393

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value RMSEA <= 0.05                             NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000

Parameter Estimates:

  Standard errors                            Bootstrap
  Number of requested bootstrap draws              100
  Number of successful bootstrap draws             100

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  behavior ~                                          
    attitude   (c)    0.029    0.066    0.446    0.655
  intention ~                                         
    attitude   (a)    0.484    0.051    9.453    0.000
  behavior ~                                          
    intention  (b)    0.438    0.075    5.843    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .behavior          0.698    0.061   11.464    0.000
   .intention         0.623    0.061   10.170    0.000

R-Square:
                   Estimate
    behavior          0.199
    intention         0.259

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    ab                0.212    0.045    4.690    0.000

> parameterEstimates(fitmod2, 
+                    ci=TRUE, level=.95, 
+                    boot.ci.type="perc")
        lhs op       rhs label   est    se      z pvalue ci.lower ci.upper
1  behavior  ~  attitude     c 0.029 0.066  0.446  0.655   -0.085    0.182
2 intention  ~  attitude     a 0.484 0.051  9.453  0.000    0.376    0.588
3  behavior  ~ intention     b 0.438 0.075  5.843  0.000    0.294    0.612
4  behavior ~~  behavior       0.698 0.061 11.464  0.000    0.561    0.822
5 intention ~~ intention       0.623 0.061 10.170  0.000    0.492    0.724
6  attitude ~~  attitude       0.928 0.000     NA     NA    0.928    0.928
7        ab :=       a*b    ab 0.212 0.045  4.690  0.000    0.131    0.319
> 

질문. 위에서 rsquare 값은 무엇을 의미하나요?

  • 우선 지정모델을 보면 (specmod) 아래처럼 세개의 리그레션을 지정한 것을 알 수 있습니다.
# 편의상 코멘트 지움
specmod <- "
     behavior ~ c*attitude
     behavior ~ b*intention
     intention ~ a*attitude
     ab := a*b
"
  • 이 중에서 종속변인을 골라내자면
    • behavior ~ attitude + intention 에서 나타나는 r square 값
    • intention ~ attitude 에서 나타나는 intention에서의 r square 값이 있을 수 있습니다.
    • 위의 둘은 poking the above 라는 아래 문서에서
lm.ba.01 <- lm(behavior~attitude+intention, data=df) # all
lm.ba.02 <- lm(behavior~intention, data=df)  # b path
lm.ba.03 <- lm(intention~attitude, data=df)  # a path
lm.ba.04 <- lm(attitude~intention, data=df)  # reverse a path 
lm.ba.05 <- lm(behavior~attitude, data=df)   # c prime path
  • 위에서 lm.ba.01 과 lm.ba.03에 해당하는 regression이라고 하겠습니다.
    • 아래는 이를 출력해보는 명령어입니다
> summary(lm.ba.01)$r.square
[1] 0.1989125
> summary(lm.ba.03)$r.square
[1] 0.2586768
  • 바로 위의 값과 같은 값이라고 보면 되겠습니다.

질문. mediation effect는 왜 두 path를 곱하나요?

            -- Intention --    
        a --               -- b
        --                    --
Attitudes  --------c'---------   Behavior

위에서 a, b는 beta coefficients라고 가정하고, 이 값들이 각각 a = 2, b = 1.5 라고 가정합니다. 이 때,

  • a는 (2) attitudes의 measurement 한 unit이 증가할 때 intention이 2 증가한다는 것을 의미합니다.
  • b는 (1.5)는 attitudes의 점수가 하나 증가할 때 마다 behavior가 2*1.5 증가함을 (3) 의미합니다. 즉, attitudes가 한 단위 증가할 때마다 beahvior는 3 증가합니다. 독립변인 attitudes의 intention을 매개로 한 영향력을 말할 때 이 3을 사용합니다. 따라서 ab (mediation effects) = a * b 로 생각할 수 있습니다.

Poking the above

# poking 둘러보기
# 모델 = 
#          a  Intention  b
# Attitude       c         Behavior
#
lm.ba.01 <- lm(behavior~attitude+intention, data=df) # all
lm.ba.02 <- lm(behavior~intention, data=df)  # b path
lm.ba.03 <- lm(intention~attitude, data=df)  # a path
lm.ba.04 <- lm(attitude~intention, data=df)  # reverse a path 
lm.ba.05 <- lm(behavior~attitude, data=df)   # c prime path

위에서

summary(lm.ba.05) 
summary(lm.ba.01)
> summary(lm.ba.05)

Call:
lm(formula = behavior ~ attitude, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.9679 -0.6291  0.0882  0.6625  1.8128 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   2.3355     0.2221   10.51  < 2e-16 ***
attitude      0.2413     0.0669    3.61  0.00039 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.909 on 197 degrees of freedom
Multiple R-squared:  0.062,	Adjusted R-squared:  0.0572 
F-statistic:   13 on 1 and 197 DF,  p-value: 0.000392

> summary(lm.ba.01)

Call:
lm(formula = behavior ~ attitude + intention, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.0192 -0.5728  0.0633  0.6373  1.7381 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   1.6962     0.2336    7.26  8.8e-12 ***
attitude      0.0294     0.0720    0.41     0.68    
intention     0.4377     0.0756    5.79  2.8e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.842 on 196 degrees of freedom
Multiple R-squared:  0.199,	Adjusted R-squared:  0.191 
F-statistic: 24.3 on 2 and 196 DF,  p-value: 3.64e-10

위 둘에서 attitude의 t test 결과를 비교해 보면

  • lm.ba.05 에서는 attitude 가 behavior 를 설명하는 것으로 나타남
  • 그러나, lm.ba.01 에서 attitude 와 intention 을 동시에 넣었을 때에는
  • attitude 의 설명력은 의미가 없어지고 intention 만이 설명력을 보임

참고. 아래는 lm 으로 얻은 리그레션 결과가 가지는 데이터들로 residuals 은 리그레션 라인의 예측치와 실제관측치의 차이인 residual 값들을 저장한 데이터를 말한다.

> names(lm.ba.03)
 [1] "coefficients"  "residuals"     "effects"       "rank"         
 [5] "fitted.values" "assign"        "qr"            "df.residual"  
 [9] "xlevels"       "call"          "terms"         "model"        
> 
  • 또한 fitted.values 는 리그레션 라인의 예측치를 말하므로 이 예측치에서 Y 변인의 (intention) 평균값을 뺀 가치는 explained 혹은 regression 혹은 극복된 error에 해당하는 값이 된다. 이를 reg.int에 저장한 것이다.
  • 또한 res.int는 residual 값을 저장한 것이다.
  • 이 둘의 각각 제곱의 합은 SS regression과 SS residual이 된다.
  • 그러므로 이 둘을 합한 값은 intention 변인의 각 개인 값에서 평균값을 제외한 값이 된다. 만약에 intention값을 그대로 (똑같이) 복원하고자 한다면
  • reg.reg + res.int + mean(df$intention) 을 이용하면 될 것이다.
reg.int <- lm.ba.03$fitted.values - mean(df$intention)
res.int <- summary(lm.ba.03)$residuals
  • 또한 SS reg + SS res = SS y = SS total = SS intention 임을 알고 있다.
# just checking 
sum(reg.int^2) + sum(res.int^2)
var(df$intention)*(length(df$intention)-1)

아래는 behavior를 종속변인으로 하고 reg.int를 독립변인으로 regression을 한 결과이다. 이 결과는 intention 의 SS 중에서 attitude의 설명력 부분이 (regression 부분) behavior에 어떻게 설명이 되는가를 보기 위한 것이다.

# the intention part contributed by attitudes 
# is it explaing behavior too? 
lm.ba.021 <- lm(behavior~reg.int, data=df) 
summary(lm.ba.021)

반대로 아래는 res.int는 attitude의 설명력을 제외한 나머지이고 이것이 behavior에 어떻게 영향을 주는지 보는 것이다. 이는 attitude의 설명력이 “mediated”되지 않고 (attitude의 설명력을 제외한) 순수 intention이 behavior에 영향을 주는 것을 보는 부분이다.

# the pure intention part excluding 
# what attitude contributes
lm.ba.022 <- lm(behavior~res.int, data=df)
summary(lm.ba.022)
  • 또한 당연한 이야기지만 int의 residual과 regression 파트를 더해서 behavior에 regression을 해보면 intention으로 regression을 한 것과 (b path) 같은 결과를 보여줄 것이다.
int.all <- res.int + reg.int 
lm.temp <- lm(behavior~int.all, data=df)
summary(lm.temp)
summary(lm.ba.02)

그러니,

  • lm.ba.021는 (reg.int로 behavior에 regression을 한 결과) attitude의 영향력이 mediated 된 intention 부분의 설명력을 보여주고
  • lm.ba.022는 (res.int로 behavior에 regression을 한 결과) attitude의 영향력을 제외한 intention 부분의 설명력을 보여주는 것이라고 볼 수 있다.

아래는 이를 다시 한번 출력해 본 것이다

summary(lm.ba.021)
summary(lm.ba.022)

혹은 아래와 같이 살펴볼 수도 있다.

# 아래는 attitude - intention - behavior 의
# 영향력의 경로를 도식화 준다. 

# intention - behavior part
summary(lm.ba.02)$r.squared
# K - attitudes 가 intention을 설명해 주는 부분 (regression error)
summary(lm.ba.021)$r.squared
# J - attitudes 가 설명하지 못하는 부분 (residual error) 
summary(lm.ba.022)$r.squared
# 위에서 intention은 K와 J로 이루어져 있다. 이를 확인하는 것
summary(lm.ba.021)$r.squared + summary(lm.ba.022)$r.squared

그렇다면 attitude가 intention을 통해서 mediated된 부분의 설명력을 제외한 나머지는 얼마가 될까라고 생각을 하면 이는 lm.ba.04 에서의 (reversed a path) residual 이 behavior에 얼마나 영향을 주는가를 보는 것과 같을 것이다. 이를 계산해 보면

# lm.ba.04 <- lm(attitude~intention, data=df)  # reverse a path 
res.temp <- lm.ba.04$residuals

# res.temp는 attitude 중에서 intention의 설명력을 제외한 (관계있는 부분을 제외한) 것을 의미
# 이것으로 behavior에 regression을 한다는 것은 attitude가 intention을 타고 넘어가는 (매개로
# 하는) 영향력을 제외한 부분만을 가지고 behavior에 regression을 한다는 것으로 이해할 수 있다
 
lm.temp <- lm(behavior~res.temp, data=df)
summary(lm.temp)
summary(lm.ba.01)

위에서
attitude의 regression coeffcient 값이 같음을 알 수 있다 (b = 0.02941).

> res.temp <- lm.ba.04$residuals
> lm.temp <- lm(behavior~res.temp, data=df)
> summary(lm.temp)

Call:
lm(formula = behavior ~ res.temp, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.1138 -0.6154  0.0725  0.6955  1.9098 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.1025     0.0665   46.66   <2e-16 ***
res.temp      0.0294     0.0802    0.37     0.71    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.938 on 197 degrees of freedom
Multiple R-squared:  0.000683,	Adjusted R-squared:  -0.00439 
F-statistic: 0.135 on 1 and 197 DF,  p-value: 0.714

> summary(lm.ba.01)

Call:
lm(formula = behavior ~ attitude + intention, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.0192 -0.5728  0.0633  0.6373  1.7381 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   1.6962     0.2336    7.26  8.8e-12 ***
attitude      0.0294     0.0720    0.41     0.68    
intention     0.4377     0.0756    5.79  2.8e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.842 on 196 degrees of freedom
Multiple R-squared:  0.199,	Adjusted R-squared:  0.191 
F-statistic: 24.3 on 2 and 196 DF,  p-value: 3.64e-10

Another modeling

성재학생이 다른 아이디어를 가지고 있다. 이를 분석에서 구현보고자 한다.

library(lavaan)
specmod <- "
    # regression test
    behavior ~ c*attitude
             + m*control
             + n*norms
    intention ~ a*attitude 
              + k*norms 
              + j*control
    behavior ~ b*intention 
    
    # indirect effect (a*b): Sobel test (Delta Method)
    ab := a*b
    kb := k*b
    jb := j*b
"
# Fit/estimate the model
fitmod <- sem(specmod, data=df)
# summarize the model
summary(fitmod, fit.measures=TRUE, rsquare=T)

Another moding output

> library(lavaan)
> 
> specmod <- "
+     # path c
+     # identifying path c (prime) by putting c*
+     behavior ~ c*attitude
+              + m*control
+              + n*norms
+ 
+     # path a
+     intention ~ a*attitude 
+               + k*norms 
+               + j*control
+ 
+     # path b 
+     behavior ~ b*intention 
+     
+     # indirect effect (a*b): Sobel test (Delta Method)
+     # 간접효과 a path x b path 를 구해서 얻음
+     # sobel test 라 부름
+     ab := a*b
+     kb := k*b
+     jb := j*b
+     
+ #    attitude ~~ norms + control
+ #    norms ~~ control
+ "
> # Fit/estimate the model
> fitmod <- sem(specmod, data=df)
> # summarize the model
> summary(fitmod, fit.measures=TRUE, rsquare=T)
lavaan 0.6-12 ended normally after 1 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         9

  Number of observations                           199

Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Model Test Baseline Model:

  Test statistic                               137.622
  Degrees of freedom                                 7
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -464.922
  Loglikelihood unrestricted model (H1)       -464.922
                                                      
  Akaike (AIC)                                 947.845
  Bayesian (BIC)                               977.484
  Sample-size adjusted Bayesian (BIC)          948.972

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value RMSEA <= 0.05                             NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  behavior ~                                          
    attitude   (c)    0.041    0.072    0.563    0.573
    control    (m)   -0.090    0.070   -1.285    0.199
    norms      (n)    0.042    0.069    0.605    0.545
  intention ~                                         
    attitude   (a)    0.352    0.058    6.068    0.000
    norms      (k)    0.153    0.059    2.577    0.010
    control    (j)    0.275    0.058    4.740    0.000
  behavior ~                                          
    intention  (b)    0.463    0.081    5.715    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .behavior          0.692    0.069    9.975    0.000
   .intention         0.530    0.053    9.975    0.000

R-Square:
                   Estimate
    behavior          0.206
    intention         0.369

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    ab                0.163    0.039    4.160    0.000
    kb                0.071    0.030    2.349    0.019
    jb                0.127    0.035    3.648    0.000

> 

What about this output

library(lavaan)

specmod <- "
    # path c
    # identifying path c (prime) by putting c*

    # path a
    intention ~ a*attitude 
              + k*norms 
              + j*control

    # path b 
    behavior ~ b*intention 
    
    # indirect effect (a*b): Sobel test (Delta Method)
    # 간접효과 a path x b path 를 구해서 얻음
    # sobel test 라 부름
    ab := a*b
    kb := k*b
    jb := j*b
    
#    attitude ~~ norms + control
#    norms ~~ control
"
# Fit/estimate the model
fitmod <- cfa(specmod, data=df)
# summarize the model
summary(fitmod, fit.measures=TRUE, rsquare=T)

아래 아웃풋의 . . . path analysis 참조
chi-square test p-value는 어떤가?
CFI, TLI는?
그 외의 지수는?
어떤 모델이 지금의 현상을 가장 잘 설명하는다고 판단하는가?

Output

library(lavaan)
> 
> specmod <- "
+     # path c
+     # identifying path c (prime) by putting c*
+ 
+     # path a
+     intention ~ a*attitude 
+               + k*norms 
+               + j*control
+ 
+     # path b 
+     behavior ~ b*intention 
+     
+     # indirect effect (a*b): Sobel test (Delta Method)
+     # 간접효과 a path x b path 를 구해서 얻음
+     # sobel test 라 부름
+     ab := a*b
+     kb := k*b
+     jb := j*b
+     
+ #    attitude ~~ norms + control
+ #    norms ~~ control
+ "
> # Fit/estimate the model
> fitmod <- cfa(specmod, data=df)
> # summarize the model
> summary(fitmod, fit.measures=TRUE, rsquare=T)
lavaan 0.6-12 ended normally after 1 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         6

  Number of observations                           199

Model Test User Model:
                                                      
  Test statistic                                 2.023
  Degrees of freedom                                 3
  P-value (Chi-square)                           0.568

Model Test Baseline Model:

  Test statistic                               137.622
  Degrees of freedom                                 7
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.017

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -465.934
  Loglikelihood unrestricted model (H1)       -464.922
                                                      
  Akaike (AIC)                                 943.868
  Bayesian (BIC)                               963.628
  Sample-size adjusted Bayesian (BIC)          944.619

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.103
  P-value RMSEA <= 0.05                          0.735

Standardized Root Mean Square Residual:

  SRMR                                           0.019

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  intention ~                                         
    attitude   (a)    0.352    0.058    6.068    0.000
    norms      (k)    0.153    0.059    2.577    0.010
    control    (j)    0.275    0.058    4.740    0.000
  behavior ~                                          
    intention  (b)    0.453    0.065    7.014    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .intention         0.530    0.053    9.975    0.000
   .behavior          0.699    0.070    9.975    0.000

R-Square:
                   Estimate
    intention         0.369
    behavior          0.198

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    ab                0.160    0.035    4.589    0.000
    kb                0.069    0.029    2.419    0.016
    jb                0.125    0.032    3.927    0.000

e.gs

# install.packages("ISLR")
library(ISLR)
attach(mtcars)

# x <- disp (배기량) 
# y <- mpg (아일리지)
# m <- wt (무게)

specmod <- "
    # path c
    # identifying path c (prime) by putting c*
    mpg ~ c*disp

    # path a
    wt ~ a*disp

    # path b 
    mpg ~ b*wt
    
    # indirect effect (a*b): Sobel test (Delta Method)
    # 간접효과 a path x b path 를 구해서 얻음
    # sobel test 라 부름
    ab := a*b
"
# Fit/estimate the model
fitmod <- sem(specmod, data=mtcars)
summary(fitmod)

set.seed(101)
fitmod2 <- sem(specmod, data=mtcars, 
               se="bootstrap", 
               bootstrap=200)
# bootstrap = 5000 is common

summary(fitmod2, fit.measures=TRUE, rsquare=TRUE)
parameterEstimates(fitmod2, 
                   ci=TRUE, level=.95, 
                   boot.ci.type="perc")
install.packages("ISLR")
library(ISLR)

attach(Carseats)

mod.total <- lm(Sales~Price, data=Carseats)
summary(mod.total)

mod.m <- lm(CompPrice~Price, data=Carseats)
summary(mod.m)

mod.y <- lm(Sales~Price+CompPrice, data=Carseats)
summary(mod.y)


# install.packages("multilevel")
library(multilevel)
sob.m <- sobel(pred = Price, med = CompPrice, out = Sales)
sob.m
pnorm(abs(sob.m$z.value), lower.tail = FALSE) * 2

install.packages("bda")
library(bda)
mediation.test(mv=CompPrice, iv=Price, dv=Sales)

install.packages("nloptr")
library(nloptr)
install.packages("mediation")
library(mediation)

set.seed(101)
mod.mediation <- mediate(model.m=mod.m, 
                         model.y = mod.y, 
                         treat="Price",
                         mediator="CompPrice",
                         boot=TRUE, sims=500)

summary(mod.mediation)

# Total Effect = 
# ADE Average Direct Effect = 직접효과
# ACME Average Causal Mediation Effect = 간접효과

plot(mod.mediation)

e.g. 2

https://advstats.psychstat.org/book/mediation/index.php

####################################
nlsy <- read.csv("http://commres.net/wiki/_media/r/nlsy.csv")
attach(nlsy)
# install.packages("bmem")
library(bmem)
library(sem)
# install.packages("cfa")
library(cfa)
##########################
nlsy.model<-specifyEquations(exog.variances=T) 
math =b*HE + cp*ME
HE = a*ME
<ENTER>

effects<-c('a*b', 'cp+a*b')
nlsy.res<-bmem.sobel(nlsy, nlsy.model,effects)
##########################
m.me.he <- lm(ME~HE)
m.math.me <- lm(math~ME)
m.math.he <- lm(math~HE)
m.math.mehe <- lm(math~ME+HE)
m.he.me <- lm(HE~ME)
summary(m.he.me)
res.m.he.me <- resid(m.he.me)
m.temp <- lm(math~res.m.he.me)
summary(m.temp)
res.m.me.he <- resid(m.me.he)
m.temp2 <- lm(math~res.m.me.he)
summary(m.temp2)

library(lavaan)
specmod <- "
# path c' (direct effect)
math ~ c*ME 

# path a
HE ~ a*ME

# path b
math ~ b*HE

# indirect effect (a*b)
# sobel test (Delta method)
ab := a*b
"

# fit/estimate model
fitmod <- sem(specmod, data=df)

# summarize/result the output
summary(fitmod, fit.measures=TRUE, rsquare=TRUE)

# for a 
summary(m.he.me)
# for b
summary(m.temp)
# for cprime 
summary(m.temp2)

a <- summary(m.he.me)$coefficient[2] # a
b <- summary(m.temp)$coefficient[2]  # b
c <- summary(m.temp2)$coefficient[2] # c
a
b
c
a*b

c2 <- summary(fitmod)$pe$est[1]
a2 <- summary(fitmod)$pe$est[2]
b2 <- summary(fitmod)$pe$est[3]
ab2 <- summary(fitmod)$pe$est[7]
a2
b2
c2
ab2
> ####################################
> nlsy <- read.csv("http://commres.net/wiki/_media/r/nlsy.csv")
> attach(nlsy)
The following objects are masked from nlsy (pos = 3):

    HE, math, ME

The following objects are masked from nlsy (pos = 5):

    HE, math, ME

The following objects are masked from df:

    HE, math, ME

> # install.packages("bmem")
> library(bmem)
> library(sem)
> # install.packages("cfa")
> library(cfa)
> 
> nlsy.model<-specifyEquations(exog.variances=T) 
1: math =b*HE + cp*ME
2: HE = a*ME
3: 
Read 2 items
NOTE: adding 3 variances to the model
> effects<-c('a*b', 'cp+a*b')
> nlsy.res<-bmem.sobel(nlsy, nlsy.model,effects)
           Estimate       S.E.   z-score      p.value
b        0.46450283 0.14304860  3.247168 1.165596e-03
cp       0.46281480 0.11977862  3.863918 1.115825e-04
a        0.13925694 0.04292438  3.244239 1.177650e-03
V[HE]    2.73092635 0.20078170 13.601471 0.000000e+00
V[math] 20.67659134 1.52017323 13.601471 0.000000e+00
V[ME]    4.00590078 0.29451968 13.601471 0.000000e+00
a*b      0.06468524 0.02818457  2.295059 2.172977e-02
cp+a*b   0.52750005 0.11978162  4.403848 1.063474e-05
> 
> m.me.he <- lm(ME~HE)
> m.math.me <- lm(math~ME)
> m.math.he <- lm(math~HE)
> m.math.mehe <- lm(math~ME+HE)
> m.he.me <- lm(HE~ME)
> summary(m.he.me)

Call:
lm(formula = HE ~ ME)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.5020 -0.7805  0.2195  1.2195  3.3587 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.10944    0.49127   8.365 1.25e-15 ***
ME           0.13926    0.04298   3.240   0.0013 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.655 on 369 degrees of freedom
Multiple R-squared:  0.02766,	Adjusted R-squared:  0.02502 
F-statistic:  10.5 on 1 and 369 DF,  p-value: 0.001305

> res.m.he.me <- resid(m.he.me)
> m.temp <- lm(math~res.m.he.me)
> summary(m.temp)

Call:
lm(formula = math ~ res.m.he.me)

Residuals:
     Min       1Q   Median       3Q      Max 
-12.4263  -3.1496  -0.3499   2.2826  29.7795 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  12.1186     0.2427  49.936  < 2e-16 ***
res.m.he.me   0.4645     0.1471   3.159  0.00172 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.674 on 369 degrees of freedom
Multiple R-squared:  0.02633,	Adjusted R-squared:  0.02369 
F-statistic: 9.978 on 1 and 369 DF,  p-value: 0.001715

> res.m.me.he <- resid(m.me.he)
> m.temp2 <- lm(math~res.m.me.he)
> summary(m.temp2)

Call:
lm(formula = math ~ res.m.me.he)

Residuals:
     Min       1Q   Median       3Q      Max 
-14.1938  -2.7965  -0.3425   2.4081  29.5656 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  12.1186     0.2413   50.22  < 2e-16 ***
res.m.me.he   0.4628     0.1224    3.78 0.000183 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.648 on 369 degrees of freedom
Multiple R-squared:  0.03728,	Adjusted R-squared:  0.03467 
F-statistic: 14.29 on 1 and 369 DF,  p-value: 0.0001828

> 
> library(lavaan)
> specmod <- "
+ # path c' (direct effect)
+ math ~ c*ME 
+ 
+ # path a
+ HE ~ a*ME
+ 
+ # path b
+ math ~ b*HE
+ 
+ # indirect effect (a*b)
+ # sobel test (Delta method)
+ ab := a*b
+ "
> 
> # fit/estimate model
> fitmod <- sem(specmod, data=df)
> 
> # summarize/result the output
> summary(fitmod, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6-12 ended normally after 1 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         5

  Number of observations                           371

Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Model Test Baseline Model:

  Test statistic                                39.785
  Degrees of freedom                                 3
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1800.092
  Loglikelihood unrestricted model (H1)      -1800.092
                                                      
  Akaike (AIC)                                3610.184
  Bayesian (BIC)                              3629.765
  Sample-size adjusted Bayesian (BIC)         3613.901

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value RMSEA <= 0.05                             NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  math ~                                              
    ME         (c)    0.463    0.120    3.869    0.000
  HE ~                                                
    ME         (a)    0.139    0.043    3.249    0.001
  math ~                                              
    HE         (b)    0.465    0.143    3.252    0.001

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
   .math             20.621    1.514   13.620    0.000
   .HE                2.724    0.200   13.620    0.000

R-Square:
                   Estimate
    math              0.076
    HE                0.028

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)
    ab                0.065    0.028    2.298    0.022

> 
> # for a 
> summary(m.he.me)

Call:
lm(formula = HE ~ ME)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.5020 -0.7805  0.2195  1.2195  3.3587 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.10944    0.49127   8.365 1.25e-15 ***
ME           0.13926    0.04298   3.240   0.0013 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.655 on 369 degrees of freedom
Multiple R-squared:  0.02766,	Adjusted R-squared:  0.02502 
F-statistic:  10.5 on 1 and 369 DF,  p-value: 0.001305

> # for b
> summary(m.temp)

Call:
lm(formula = math ~ res.m.he.me)

Residuals:
     Min       1Q   Median       3Q      Max 
-12.4263  -3.1496  -0.3499   2.2826  29.7795 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  12.1186     0.2427  49.936  < 2e-16 ***
res.m.he.me   0.4645     0.1471   3.159  0.00172 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.674 on 369 degrees of freedom
Multiple R-squared:  0.02633,	Adjusted R-squared:  0.02369 
F-statistic: 9.978 on 1 and 369 DF,  p-value: 0.001715

> # for cprime 
> summary(m.temp2)

Call:
lm(formula = math ~ res.m.me.he)

Residuals:
     Min       1Q   Median       3Q      Max 
-14.1938  -2.7965  -0.3425   2.4081  29.5656 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  12.1186     0.2413   50.22  < 2e-16 ***
res.m.me.he   0.4628     0.1224    3.78 0.000183 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.648 on 369 degrees of freedom
Multiple R-squared:  0.03728,	Adjusted R-squared:  0.03467 
F-statistic: 14.29 on 1 and 369 DF,  p-value: 0.0001828

> 
> a <- summary(m.he.me)$coefficient[2] # a
> b <- summary(m.temp)$coefficient[2]  # b
> c <- summary(m.temp2)$coefficient[2] # c
> a
[1] 0.1392569
> b
[1] 0.4645028
> c
[1] 0.4628148
> a*b
[1] 0.06468524
> 
> c2 <- summary(fitmod)$pe$est[1]
> a2 <- summary(fitmod)$pe$est[2]
> b2 <- summary(fitmod)$pe$est[3]
> ab2 <- summary(fitmod)$pe$est[7]
> a2
[1] 0.1392569
> b2
[1] 0.4645028
> c2
[1] 0.4628148
> ab2
[1] 0.06468524
> 

temp

tests <- read.csv("http://commres.net/wiki/_media/r/tests_cor.csv")
colnames(tests) <- c("ser", "sat", "clep", "gpa")
tests <- subset(tests, select=c("sat", "clep", "gpa"))
attach(tests)
lm.gpa.clepsat <- lm(gpa ~ clep + sat, data = tests) 
summary(lm.gpa.clepsat)

lm.gpa.clep <- lm(gpa ~ clep)
lm.gpa.sat <- lm(gpa ~ sat)
summary(lm.gpa.clep)
summary(lm.gpa.sat)
>  lm.gpa.clepsat <- lm(gpa ~ clep + sat, data = tests) 
> summary(lm.gpa.clepsat)

Call:
lm(formula = gpa ~ clep + sat, data = tests)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.197888 -0.128974 -0.000528  0.131170  0.226404 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)  
(Intercept)  1.1607560  0.4081117   2.844   0.0249 *
clep         0.0729294  0.0253799   2.874   0.0239 *
sat         -0.0007015  0.0012564  -0.558   0.5940  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1713 on 7 degrees of freedom
Multiple R-squared:  0.7778,	Adjusted R-squared:  0.7143 
F-statistic: 12.25 on 2 and 7 DF,  p-value: 0.005175
> 

0.7778 이 두 변인 clep 과 sat 가 gpa를 설명하는 부분
summary(lm.gpa.clepsat)$r.squared = 0.778

그리고, 위에서 sat의 설명력은 significant하지 않음
그럼 sat만으로 gpa를 보면?

> lm.gpa.clep <- lm(gpa ~ clep)
> lm.gpa.sat <- lm(gpa ~ sat)
> summary(lm.gpa.clep)

Call:
lm(formula = gpa ~ clep)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.190496 -0.141167 -0.002376  0.110847  0.225207 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.17438    0.38946   3.015 0.016676 *  
clep         0.06054    0.01177   5.144 0.000881 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1637 on 8 degrees of freedom
Multiple R-squared:  0.7679,	Adjusted R-squared:  0.7388 
F-statistic: 26.46 on 1 and 8 DF,  p-value: 0.0008808

> summary(lm.gpa.sat)

Call:
lm(formula = gpa ~ sat)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.23544 -0.12184  0.00316  0.02943  0.56456 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) 1.7848101  0.4771715   3.740   0.0057 **
sat         0.0024557  0.0008416   2.918   0.0193 * 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2365 on 8 degrees of freedom
Multiple R-squared:  0.5156,	Adjusted R-squared:  0.455 
F-statistic: 8.515 on 1 and 8 DF,  p-value: 0.01935

> 

위에서처럼 significant함.
summary(lm.gpa.clep)$r.squared = 0.7679
summary(lm.gpa.sat)$r.squared = 0.5156

그렇다면 sat의 영향력은 clep을 매개로 해서 나타나는가를 보기 위해서

> lm.clep.sat <- lm(clep ~ sat) 
> summary(lm.clep.sat)

Call:
lm(formula = clep ~ sat)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.5316 -1.2437 -0.2848  0.0949  5.6329 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 8.556962   4.813367   1.778  0.11334    
sat         0.043291   0.008489   5.100  0.00093 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.386 on 8 degrees of freedom
Multiple R-squared:  0.7648,	Adjusted R-squared:  0.7353 
F-statistic: 26.01 on 1 and 8 DF,  p-value: 0.0009303

> 
res.lm.clep.sat <- resid(lm.clep.sat)
reg.lm.clep.sat <- predict(lm.clep.sat)-mean(clep)
lm.gpa.sat.mediated.via.clep <- lm(gpa~reg.lm.clep.sat)
lm.gpa.clep.alone <- lm(gpa~res.lm.clep.sat)

summary(lm.gpa.sat.mediated.via.clep)
summary(lm.gpa.clep.alone)
> res.lm.clep.sat <- resid(lm.clep.sat)
> reg.lm.clep.sat <- predict(lm.clep.sat)-mean(clep)
> lm.gpa.sat.mediated.via.clep <- lm(gpa~reg.lm.clep.sat)
> lm.gpa.clep.alone <- lm(gpa~res.lm.clep.sat)
> 
> summary(lm.gpa.sat.mediated.via.clep)

Call:
lm(formula = gpa ~ reg.lm.clep.sat)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.23544 -0.12184  0.00316  0.02943  0.56456 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.16000    0.07480  42.246 1.09e-10 ***
reg.lm.clep.sat  0.05673    0.01944   2.918   0.0193 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2365 on 8 degrees of freedom
Multiple R-squared:  0.5156,	Adjusted R-squared:  0.455 
F-statistic: 8.515 on 1 and 8 DF,  p-value: 0.01935

> summary(lm.gpa.clep.alone)

Call:
lm(formula = gpa ~ res.lm.clep.sat)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.34523 -0.23300 -0.04416  0.27577  0.36370 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.16000    0.09231  34.231  5.8e-10 ***
res.lm.clep.sat  0.07293    0.04326   1.686     0.13    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2919 on 8 degrees of freedom
Multiple R-squared:  0.2622,	Adjusted R-squared:  0.1699 
F-statistic: 2.842 on 1 and 8 DF,  p-value: 0.1303

> 

sat의 영향력 mediated via clep = Multiple R-squared: 0.5156
sat의 영향력을 제외한 celp만의 설명력 = Multiple R-squared: 0.2622

mediation_analysis.1686722216.txt.gz · Last modified: 2023/06/14 14:56 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki