path_analysis
                Differences
This shows you the differences between two versions of the page.
| Next revision | Previous revision | ||
| path_analysis [2022/11/09 21:21] – created hkimscil | path_analysis [2024/09/28 05:45] (current) – hkimscil | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ====== Path Analysis ====== | ====== Path Analysis ====== | ||
| ===== Planned Behavior Modeling ===== | ===== Planned Behavior Modeling ===== | ||
| - | < | + | < | 
| ###################################################### | ###################################################### | ||
| ## data file: PlannedBehavior.csv | ## data file: PlannedBehavior.csv | ||
| Line 27: | Line 27: | ||
| # Summarize model | # Summarize model | ||
| summary(fitmod, | summary(fitmod, | ||
| + | </ | ||
| + | ====== Output ====== | ||
| + | < | ||
| + | ###################################################### | ||
| + | > ## data file: PlannedBehavior.csv | ||
| + | > ###################################################### | ||
| + | > df <- read.csv(" | ||
| + | > head(df) | ||
| + | attitude norms control intention behavior | ||
| + | 1      | ||
| + | 2      | ||
| + | 3      | ||
| + | 4      | ||
| + | 5      | ||
| + | 6      | ||
| + | > str(df) | ||
| + | ' | ||
| + | $ attitude : num 2.31 4.66 3.85 4.24 2.91 2.99 3.96 3.01 4.77 3.67 ... | ||
| + | $ norms : num 2.31 4.01 3.56 2.25 3.31 2.51 4.65 2.98 3.09 3.63 ... | ||
| + |  $ control  | ||
| + | $ intention: num 2.5 3.99 4.35 1.51 1.45 2.59 4.08 2.58 4.87 3.09 ... | ||
| + | $ behavior : num 2.62 3.64 3.83 2.25 2 2.2 4.41 4.15 4.35 3.95 ... | ||
| + | > ###################################################### | ||
| + | > # attitude | ||
| + | > # norms | ||
| + | > # control | ||
| + | > # intention | ||
| + | > # behavior | ||
| + | > ###################################################### | ||
| + | > # install.packages(" | ||
| + | > library(lavaan) | ||
| + | This is lavaan 0.6-9 | ||
| + | lavaan is FREE software! Please report any bugs. | ||
| + | Warning message: | ||
| + | 패키지 ‘lavaan’는 R 버전 4.1.2에서 작성되었습니다  | ||
| + | > | ||
| + | > # Specify model | ||
| + | > specmod <- " | ||
| + | + intention ~ attitude + norms + control  | ||
| + | + " | ||
| + | > # Estimate model | ||
| + | > fitmod <- sem(specmod, | ||
| + | > | ||
| + | > # Summarize model | ||
| + | > summary(fitmod, | ||
| + | lavaan 0.6-9 ended normally after 11 iterations | ||
| + | |||
| + |   Estimator  | ||
| + |   Optimization method  | ||
| + |   Number of model parameters  | ||
| + |                                                        | ||
| + |   Number of observations  | ||
| + |                                                        | ||
| + | Model Test User Model: | ||
| + |                                                        | ||
| + |   Test statistic  | ||
| + |   Degrees of freedom  | ||
| + | |||
| + | Model Test Baseline Model: | ||
| + | |||
| + |   Test statistic  | ||
| + |   Degrees of freedom  | ||
| + |   P-value  | ||
| + | |||
| + | User Model versus Baseline Model: | ||
| + | |||
| + | Comparative Fit Index (CFI) 1.000 | ||
| + | Tucker-Lewis Index (TLI) 1.000 | ||
| + | |||
| + | Loglikelihood and Information Criteria: | ||
| + | |||
| + |   Loglikelihood user model (H0)                | ||
| + |   Loglikelihood unrestricted model (H1)        | ||
| + |                                                        | ||
| + |   Akaike (AIC)                                  | ||
| + |   Bayesian (BIC)                                | ||
| + | Sample-size adjusted Bayesian (BIC) 446.990 | ||
| + | |||
| + | Root Mean Square Error of Approximation: | ||
| + | |||
| + | RMSEA 0.000 | ||
| + | 90 Percent confidence interval - lower 0.000 | ||
| + | 90 Percent confidence interval - upper 0.000 | ||
| + | P-value RMSEA <= 0.05 NA | ||
| + | |||
| + | Standardized Root Mean Square Residual: | ||
| + | |||
| + | SRMR 0.000 | ||
| + | |||
| + | Parameter Estimates: | ||
| + | |||
| + |   Standard errors  | ||
| + |   Information  | ||
| + | Information saturated (h1) model Structured | ||
| + | |||
| + | Regressions: | ||
| + |                     | ||
| + | intention ~ | ||
| + |     attitude  | ||
| + |     norms              | ||
| + |     control  | ||
| + | |||
| + | Variances: | ||
| + |                     | ||
| + |     | ||
| + | |||
| + | R-Square: | ||
| + |                     | ||
| + |     intention  | ||
| </ | </ | ||
| - | ======  | + | ======  | 
| + | < | ||
| + | # Specify model | ||
| + | specmod2 <- " | ||
| + | intention ~ attitude + norms + control | ||
| + | attitude ~~ norms + control | ||
| + | norms ~~ control | ||
| + | " | ||
| + | # Estimate model | ||
| + | fitmod2 <- sem(specmod2, | ||
| + | |||
| + | # Summarize model | ||
| + | summary(fitmod2, | ||
| + | </ | ||
| + | |||
| + | < | ||
| + | fitmod <- lm(intention ~ attitude + norms + control, data=df) | ||
| + | summary(fitmod) | ||
| + | </ | ||
| + | |||
| + | < | ||
| + | |||
| + | > # Specify model | ||
| + | > specmod2 <- " | ||
| + | + intention ~ attitude + norms + control | ||
| + | + attitude ~~ norms + control | ||
| + | + norms ~~ control | ||
| + | + " | ||
| + | > # Estimate model | ||
| + | > fitmod2 <- sem(specmod2, | ||
| + | > | ||
| + | > # Summarize model | ||
| + | > summary(fitmod2, | ||
| + | lavaan 0.6-9 ended normally after 17 iterations | ||
| + | |||
| + |   Estimator  | ||
| + |   Optimization method  | ||
| + |   Number of model parameters  | ||
| + | |||
| + |   Number of observations  | ||
| + | |||
| + | Model Test User Model: | ||
| + | |||
| + |   Test statistic  | ||
| + |   Degrees of freedom  | ||
| + | |||
| + | Model Test Baseline Model: | ||
| + | |||
| + |   Test statistic  | ||
| + |   Degrees of freedom  | ||
| + |   P-value  | ||
| + | |||
| + | User Model versus Baseline Model: | ||
| + | |||
| + | Comparative Fit Index (CFI) 1.000 | ||
| + |   Tucker-Lewis Index (TLI)                        | ||
| + | |||
| + | Loglikelihood and Information Criteria: | ||
| + | |||
| + | Loglikelihood user model (H0) -1011.828 | ||
| + | Loglikelihood unrestricted model (H1) -1011.828 | ||
| + | |||
| + | Akaike (AIC) 2043.656 | ||
| + | Bayesian (BIC) 2076.589 | ||
| + |   Sample-size adjusted Bayesian (BIC)          | ||
| + | |||
| + | Root Mean Square Error of Approximation: | ||
| + | |||
| + | RMSEA 0.000 | ||
| + |   90 Percent confidence interval - lower          | ||
| + |   90 Percent confidence interval - upper          | ||
| + | P-value RMSEA <= 0.05 NA | ||
| + | |||
| + | Standardized Root Mean Square Residual: | ||
| + | |||
| + |   SRMR                                            | ||
| + | |||
| + | Parameter Estimates: | ||
| + | |||
| + |   Standard errors  | ||
| + |   Information  | ||
| + | Information saturated (h1) model Structured | ||
| + | |||
| + | Regressions: | ||
| + |                     | ||
| + | intention ~ | ||
| + |     attitude  | ||
| + |     norms              | ||
| + |     control  | ||
| + | |||
| + | Covariances: | ||
| + |                     | ||
| + | attitude ~~ | ||
| + |     norms              | ||
| + |     control  | ||
| + | norms ~~ | ||
| + |     control  | ||
| + | |||
| + | Variances: | ||
| + |                     | ||
| + |     | ||
| + |     attitude  | ||
| + |     norms              | ||
| + |     control  | ||
| + | |||
| + | R-Square: | ||
| + |                     | ||
| + |     intention  | ||
| + | |||
| + | > | ||
| + | > fitmod <- lm(intention ~ attitude + norms + control, data=df) | ||
| + | > summary(fitmod) | ||
| + | |||
| + | Call: | ||
| + | lm(formula = intention ~ attitude + norms + control, data = df) | ||
| + | |||
| + | Residuals: | ||
| + |       | ||
| + | -1.80282 -0.52734 -0.06018  | ||
| + | |||
| + | Coefficients: | ||
| + |             Estimate Std. Error t value Pr(> | ||
| + | (Intercept)  | ||
| + | attitude  | ||
| + | norms        0.15250  | ||
| + | control  | ||
| + | --- | ||
| + | Signif. codes:  | ||
| + | |||
| + | Residual standard error: 0.7356 on 195 degrees of freedom | ||
| + | Multiple R-squared:  | ||
| + | F-statistic: | ||
| + | |||
| + | > | ||
| + | </ | ||
| + | ====== Model 3 ====== | ||
| + | < | ||
| + | # Specify model | ||
| + | specmod3 <- " | ||
| + | # directional relationships | ||
| + | intention ~ attitude + norms + control | ||
| + | behavior ~ intention | ||
| + | |||
| + | # covariances | ||
| + | attitude ~~ norms + control | ||
| + | norms ~~ control | ||
| + | " | ||
| + | # Estimate model | ||
| + | fitmod3 <- sem(specmod3, | ||
| + | |||
| + | # Summarize model | ||
| + | summary(fitmod3, | ||
| + | </ | ||
| + | < | ||
| + | > df <- read.csv(" | ||
| + | > # Specify model | ||
| + | > specmod3 <- " | ||
| + | + # directional relationships | ||
| + | +    | ||
| + | +    | ||
| + | + | ||
| + | + # covariances | ||
| + | +    | ||
| + | + norms ~~ control | ||
| + | + " | ||
| + | > # Estimate model | ||
| + | > fitmod3 <- sem(specmod3, | ||
| + | > | ||
| + | > # Summarize model | ||
| + | > summary(fitmod3, | ||
| + | lavaan 0.6-12 ended normally after 18 iterations | ||
| + | |||
| + |   Estimator  | ||
| + |   Optimization method  | ||
| + |   Number of model parameters  | ||
| + | |||
| + |   Number of observations  | ||
| + | |||
| + | Model Test User Model: | ||
| + | |||
| + |   Test statistic  | ||
| + |   Degrees of freedom  | ||
| + |   P-value (Chi-square)  | ||
| + | |||
| + | Model Test Baseline Model: | ||
| + | |||
| + |   Test statistic  | ||
| + |   Degrees of freedom  | ||
| + |   P-value  | ||
| + | |||
| + | User Model versus Baseline Model: | ||
| + | |||
| + | Comparative Fit Index (CFI) 1.000 | ||
| + |   Tucker-Lewis Index (TLI)                        | ||
| + | |||
| + | Loglikelihood and Information Criteria: | ||
| + | |||
| + | Loglikelihood user model (H0) -1258.517 | ||
| + | Loglikelihood unrestricted model (H1) -1257.506 | ||
| + | |||
| + | Akaike (AIC) 2541.035 | ||
| + | Bayesian (BIC) 2580.555 | ||
| + |   Sample-size adjusted Bayesian (BIC)          | ||
| + | |||
| + | Root Mean Square Error of Approximation: | ||
| + | |||
| + | RMSEA 0.000 | ||
| + |   90 Percent confidence interval - lower          | ||
| + |   90 Percent confidence interval - upper          | ||
| + | P-value RMSEA <= 0.05 0.735 | ||
| + | |||
| + | Standardized Root Mean Square Residual: | ||
| + | |||
| + |   SRMR                                            | ||
| + | |||
| + | Parameter Estimates: | ||
| + | |||
| + |   Standard errors  | ||
| + |   Information  | ||
| + | Information saturated (h1) model Structured | ||
| + | |||
| + | Regressions: | ||
| + |                     | ||
| + | intention ~ | ||
| + |     attitude  | ||
| + |     norms              | ||
| + |     control  | ||
| + | behavior ~ | ||
| + |     intention  | ||
| + | |||
| + | Covariances: | ||
| + |                     | ||
| + | attitude ~~ | ||
| + |     norms              | ||
| + |     control  | ||
| + | norms ~~ | ||
| + |     control  | ||
| + | |||
| + | Variances: | ||
| + |                     | ||
| + |     | ||
| + |     | ||
| + |     attitude  | ||
| + |     norms              | ||
| + |     control  | ||
| + | |||
| + | R-Square: | ||
| + |                     | ||
| + |     intention  | ||
| + |     behavior  | ||
| + | |||
| + | </ | ||
| + | |||
| + | < | ||
| + | a <- (5*(5+1))/ | ||
| + | b <- 12 | ||
| + | a-b | ||
| - | < | ||
| </ | </ | ||
path_analysis.1667996494.txt.gz · Last modified:  by hkimscil
                
                