User Tools

Site Tools


principal_component_analysis

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
principal_component_analysis [2019/11/09 15:47] – created hkimscilprincipal_component_analysis [2019/11/16 15:06] (current) – [e.g. saq] hkimscil
Line 1: Line 1:
 ====== PCA ====== ====== PCA ======
 +[[https://www.theanalysisfactor.com/the-fundamental-difference-between-principal-component-analysis-and-factor-analysis/|Difference between PCA and FA]] 
 +  * Both are data reduction techniques — they allow you to capture the variance in variables in a smaller set.
 +  * Both are usually run in stat software using the same procedure, and the output looks pretty much the same.
 +  * The steps you take to run them are the same-extraction, interpretation, rotation, choosing the number of factors or components.
 +  * Despite all these similarities, there is a fundamental difference between them: PCA is a linear combination of variables; Factor Analysis is a measurement model of a latent variable.
 +====== Some useful lectures ======
 +
 {{youtube>FgakZw6K1QQ}} {{youtube>FgakZw6K1QQ}}
 +<WRAP clear />
 +{{youtube>g-Hb26agBFg}} 
 +<WRAP clear />
 +{{youtube>0Jp4gsfOLMs}} 
 +<WRAP clear />
 +
 +{{pca_gsp.csv}}
 +Od8gfNOOS9o
 +
 +<code>## In this example, the data is in a matrix called
 +## data.matrix
 +## columns are individual samples (i.e. cells)
 +## rows are measurements taken for all the samples (i.e. genes)
 +## Just for the sake of the example, here's some made up data...
 +data.matrix <- matrix(nrow=100, ncol=10)
 +colnames(data.matrix) <- c(
 +  paste("wt", 1:5, sep=""),
 +  paste("ko", 1:5, sep=""))
 +rownames(data.matrix) <- paste("gene", 1:100, sep="")
 +for (i in 1:100) {
 +  wt.values <- rpois(5, lambda=sample(x=10:1000, size=1))
 +  ko.values <- rpois(5, lambda=sample(x=10:1000, size=1))
 + 
 +  data.matrix[i,] <- c(wt.values, ko.values)
 +}
 +head(data.matrix)
 +dim(data.matrix)
 + 
 +pca <- prcomp(t(data.matrix), scale=TRUE) 
 + 
 +## plot pc1 and pc2
 +plot(pca$x[,1], pca$x[,2])
 + 
 +## make a scree plot
 +pca.var <- pca$sdev^2
 +pca.var.per <- round(pca.var/sum(pca.var)*100, 1)
 + 
 +barplot(pca.var.per, main="Scree Plot", xlab="Principal Component", ylab="Percent Variation")
 + 
 +## now make a fancy looking plot that shows the PCs and the variation:
 +library(ggplot2)
 + 
 +pca.data <- data.frame(Sample=rownames(pca$x),
 +  X=pca$x[,1],
 +  Y=pca$x[,2])
 +pca.data
 + 
 +ggplot(data=pca.data, aes(x=X, y=Y, label=Sample)) +
 +  geom_text() +
 +  xlab(paste("PC1 - ", pca.var.per[1], "%", sep="")) +
 +  ylab(paste("PC2 - ", pca.var.per[2], "%", sep="")) +
 +  theme_bw() +
 +  ggtitle("My PCA Graph")
 + 
 +## get the name of the top 10 measurements (genes) that contribute
 +## most to pc1.
 +loading_scores <- pca$rotation[,1]
 +gene_scores <- abs(loading_scores) ## get the magnitudes
 +gene_score_ranked <- sort(gene_scores, decreasing=TRUE)
 +top_10_genes <- names(gene_score_ranked[1:10])
 + 
 +top_10_genes ## show the names of the top 10 genes
 + 
 +pca$rotation[top_10_genes,1] ## show the scores (and +/- sign)
 + 
 +#######
 +##
 +## NOTE: Everything that follow is just bonus stuff.
 +## It simply demonstrates how to get the same
 +## results using "svd()" (Singular Value Decomposition) or using "eigen()"
 +## (Eigen Decomposition).
 +##
 +#######
 + 
 +############################################
 +##
 +## Now let's do the same thing with svd()
 +##
 +## svd() returns three things
 +## v = the "rotation" that prcomp() returns, this is a matrix of eigenvectors
 +##     in other words, a matrix of loading scores
 +## u = this is similar to the "x" that prcomp() returns. In other words,
 +##     sum(the rotation * the original data), but compressed to the unit vector
 +##     You can spread it out by multiplying by "d"
 +## d = this is similar to the "sdev" value that prcomp() returns (and thus
 +##     related to the eigen values), but not
 +##     scaled by sample size in an unbiased way (ie. 1/(n-1)).
 +##     For prcomp(), sdev = sqrt(var) = sqrt(ss(fit)/(n-1))
 +##     For svd(), d = sqrt(ss(fit))
 +##
 +############################################
 + 
 +svd.stuff <- svd(scale(t(data.matrix), center=TRUE))
 + 
 +## calculate the PCs
 +svd.data <- data.frame(Sample=colnames(data.matrix),
 +  X=(svd.stuff$u[,1] * svd.stuff$d[1]),
 +  Y=(svd.stuff$u[,2] * svd.stuff$d[2]))
 +svd.data
 + 
 +## alternatively, we could compute the PCs with the eigen vectors and the
 +## original data
 +svd.pcs <- t(t(svd.stuff$v) %*% t(scale(t(data.matrix), center=TRUE)))
 +svd.pcs[,1:2] ## the first to principal components
 + 
 +svd.df <- ncol(data.matrix) - 1
 +svd.var <- svd.stuff$d^2 / svd.df
 +svd.var.per <- round(svd.var/sum(svd.var)*100, 1)
 + 
 +ggplot(data=svd.data, aes(x=X, y=Y, label=Sample)) +
 +  geom_text() +
 +  xlab(paste("PC1 - ", svd.var.per[1], "%", sep="")) +
 +  ylab(paste("PC2 - ", svd.var.per[2], "%", sep="")) +
 +  theme_bw() +
 +  ggtitle("svd(scale(t(data.matrix), center=TRUE)")
 + 
 +############################################
 +##
 +## Now let's do the same thing with eigen()
 +##
 +## eigen() returns two things...
 +## vectors = eigen vectors (vectors of loading scores)
 +##           NOTE: pcs = sum(loading scores * values for sample)
 +## values = eigen values
 +##
 +############################################
 +cov.mat <- cov(scale(t(data.matrix), center=TRUE))
 +dim(cov.mat)
 + 
 +## since the covariance matrix is symmetric, we can tell eigen() to just
 +## work on the lower triangle with "symmetric=TRUE"
 +eigen.stuff <- eigen(cov.mat, symmetric=TRUE)
 +dim(eigen.stuff$vectors)
 +head(eigen.stuff$vectors[,1:2])
 + 
 +eigen.pcs <- t(t(eigen.stuff$vectors) %*% t(scale(t(data.matrix), center=TRUE)))
 +eigen.pcs[,1:2]
 + 
 +eigen.data <- data.frame(Sample=rownames(eigen.pcs),
 +  X=(-1 * eigen.pcs[,1]), ## eigen() flips the X-axis in this case, so we flip it back
 +  Y=eigen.pcs[,2]) ## X axis will be PC1, Y axis will be PC2
 +eigen.data
 + 
 +eigen.var.per <- round(eigen.stuff$values/sum(eigen.stuff$values)*100, 1)
 + 
 +ggplot(data=eigen.data, aes(x=X, y=Y, label=Sample)) +
 +  geom_text() +
 +  xlab(paste("PC1 - ", eigen.var.per[1], "%", sep="")) +
 +  ylab(paste("PC2 - ", eigen.var.per[2], "%", sep="")) +
 +  theme_bw() +
 +  ggtitle("eigen on cov(t(data.matrix))")
 +</code>
 +
 +====== e.g. saq ======
 +SPSS Anxiety Questionnaire
 +{{:r:saq8.csv}}
 +
 +
 +
 +<code>
 +# saq <- read.csv("http://commres.net/wiki/_media/r/saq.csv", header = T)
 +saq8 <- read.csv("http://commres.net/wiki/_media/r/saq8.csv", header = T)
 +head(saq8)
 +saq8 <- saq8[c(-1)]
 +</code>
 +
 +<code>
 +> round(cor(saq8),3)
 +              stat_cry afraid_spss sd_excite nmare_pearson du_stat lexp_comp comp_hate good_math
 +stat_cry         1.000      -0.099    -0.337         0.436   0.402     0.217     0.305     0.331
 +afraid_spss     -0.099       1.000     0.318        -0.112  -0.119    -0.074    -0.159    -0.050s
 +sd_excite       -0.337       0.318     1.000        -0.380  -0.310    -0.227    -0.382    -0.259
 +nmare_pearson    0.436      -0.112    -0.380         1.000   0.401     0.278     0.409     0.349
 +du_stat          0.402      -0.119    -0.310         0.401   1.000     0.257     0.339     0.269
 +lexp_comp        0.217      -0.074    -0.227         0.278   0.257     1.000     0.514     0.223
 +comp_hate        0.305      -0.159    -0.382         0.409   0.339     0.514     1.000     0.297
 +good_math        0.331      -0.050    -0.259         0.349   0.269     0.223     0.297     1.000
 +
 +</code>
 +
 +<code>
 +install.packages("Hmisc")
 +library(Hmisc)
 +saq8.rcorr <- rcorr(as.matrix(saq8))
 + 
 +print(saq8.rcorr$r, digits = 3)
 +</code>
 +
 +
principal_component_analysis.1573282071.txt.gz · Last modified: 2019/11/09 15:47 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki