quartile

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
quartile [2019/09/16 11:46] hkimscilquartile [2023/09/11 08:42] (current) – [r method] hkimscil
Line 11: Line 11:
 사분범위 = (상한사분위수) - (하한사분위수) 사분범위 = (상한사분위수) - (하한사분위수)
  
----- 
 ====== Finding lower and upper quartile ====== ====== Finding lower and upper quartile ======
-===== head first =====+===== e.g. 1, Head First method ===== 
 +<code>> k <- c(1:8) 
 +> k 
 +[1] 1 2 3 4 5 6 7 8 
 +> quantile(k) 
 +  0%  25%  50%  75% 100%  
 +1.00 2.75 4.50 6.25 8.00  
 +> </code> 
 + 
 +<code>{1, 2, 3, 4, 5, 6, 7, 8}</code> 
 +head first
   * 하한   * 하한
     * n / 4 = ?     * n / 4 = ?
Line 23: Line 32:
     * 정수가 아니면? 올림을 한 위치 값     * 정수가 아니면? 올림을 한 위치 값
  
-<code>> k <- c(1:8) +위의 방법으로는 
-> k +
-[1] 1 2 3 4 5 6 7 8 +
-> quantile(k) +
-  0%  25%  50%  75% 100%  +
-1.00 2.75 4.50 6.25 8.00  +
-> </code> +
-그러나, 위의 방법으로는 +
 lower quartile: 2.5 lower quartile: 2.5
 upper quartile: 6.5 upper quartile: 6.5
  
 +Ordered Data Set: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49
  
 +  * 11 / 4 = 2.75 -> 3
 +  * lower quartile: 15
 +  * 33 / 4 = 8.25 -> 9
 +  * upper: 43
  
-===== Method 1 ===== 
-  * Use the median to divide the ordered data set into two halves. 
-  * If there is an odd number of data points in the original ordered data set, do not include the median (the central value in the ordered list) in either half. 
-  * If there is an even number of data points in the original ordered data set, split this data set exactly in half. 
-  * The lower quartile value is the median of the lower half of the data. The upper quartile value is the median of the upper half of the data. 
-  * This rule is employed by the TI-83 calculator boxplot and "1-Var Stats" functions. 
  
-===== Method 2 =====+===== r method ===== 
 +in r 
 +<code> 
 +j <- c(1,2,3,4,5) 
 +j <- sort(j) 
 +quantile(j) 
 +</code> 
 + 
 +<code> 
 +> j <- c(1,2,3,4,5) 
 +> j <- sort(j) 
 +> quantile(j) 
 +  0%  25%  50%  75% 100%  
 +      2    3    4    5  
 +>  
 +</code> 
 +Odd number of elements 
   * Use the median to divide the ordered data set into two halves.   * Use the median to divide the ordered data set into two halves.
-  * If there are an odd number of data points in the original ordered data set, include the median (the central value in the ordered list) in both halves. +  * If there are an odd number of data points in the original ordered data set, include the median (the central value in the ordered list) in both halves. (가운데 숫자)
-  * If there are an even number of data points in the original ordered data set, split this data set exactly in half. +
-  * The lower quartile value is the median of the lower half of the data. The upper quartile value is the median of the upper half of the data. +
-  * The values found by this method are also known as "Tukey's hinges."+
  
-Ordered Data Set: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49 
  
-|     | method 1  | method 2  | +<code> 
-| Q1  | 15        | 25.5      | +j2 <- c(1,2,3,4,5,6) 
-| Q2  | 40        | 40        | +j2 <- sort(j2) 
-| Q3  | 43        | 42.5      |+quantile(j2) 
 +</code> 
 +<code> 
 +> j2 <- c(1,2,3,4,5,6) 
 +> j2 <- sort(j2) 
 +> quantile(j2) 
 +  0%  25%  50%  75% 100%  
 +1.00 2.25 3.50 4.75 6.00  
 +>  
 +>  
 +</code> 
 + 
 +Even number of elements 
 +  * If there are an even number of data points in the original ordered data set, split this data set exactly in half. 즉, 3과 4의 가운데 값 (50%) = 3.5  
 +  * lower bound (lower quartile) 앞부분을 반으로 쪼갯을 때의 숫자 (여기서는 2) 더하기, 그 다음숫자와의 차이의 (3-2) 1/4지점 (여기서는 2 + 0.25 = 2.25) 구한다. 
 +  * upper bound는 뒷부분의 반인 5에서 한칸 아래의 숫자인 4 더하기, 그 다음 숫자와의 차이의 (5와 4의 차이인 1) 3/4 지점을 (여기서는 4 + 0.75 = 4.75) 구한다.  
 + 
 +<code> 
 +> j3 <- c(7, 18, 5, 9, 12, 15) 
 +> j3s <- sort(j3) 
 +> j3s 
 +[1]  5  7  9 12 15 18 
 +> quantile(j3s) 
 +   0%   25%   50%   75%  100%  
 + 5.00  7.50 10.50 14.25 18.00  
 +>  
 +</code> 
 +median = (9+12)/2 
 +the 1st quartile = 7 + (9-7)*(1/4) = 7 + 0.5 = 7.5 
 +the 3rd quartile = 12 + (12-9)*(3/4) = 12 + 2.25 = 14.25
  
-in r 
-<code>> k <- c(1:8) 
-> k 
-[1] 1 2 3 4 5 6 7 8 
-> quantile(k) 
-  0%  25%  50%  75% 100%  
-1.00 2.75 4.50 6.25 8.00  
-> </code> 
 ---- ----
 in r in r
quartile.1568602011.txt.gz · Last modified: 2019/09/16 11:46 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki