quartile
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| quartile [2019/09/16 11:52] – hkimscil | quartile [2023/09/11 08:42] (current) – [r method] hkimscil | ||
|---|---|---|---|
| Line 11: | Line 11: | ||
| 사분범위 = (상한사분위수) - (하한사분위수) | 사분범위 = (상한사분위수) - (하한사분위수) | ||
| - | ---- | ||
| ====== Finding lower and upper quartile ====== | ====== Finding lower and upper quartile ====== | ||
| - | ===== head first ===== | + | ===== e.g. 1, Head First method |
| + | < | ||
| + | > k | ||
| + | [1] 1 2 3 4 5 6 7 8 | ||
| + | > quantile(k) | ||
| + | 0% 25% 50% 75% 100% | ||
| + | 1.00 2.75 4.50 6.25 8.00 | ||
| + | > </ | ||
| + | |||
| + | < | ||
| + | head first | ||
| * 하한 | * 하한 | ||
| * n / 4 = ? | * n / 4 = ? | ||
| Line 23: | Line 32: | ||
| * 정수가 아니면? 올림을 한 위치 값 | * 정수가 아니면? 올림을 한 위치 값 | ||
| - | < | + | 위의 방법으로는 |
| - | > k | + | |
| - | [1] 1 2 3 4 5 6 7 8 | + | |
| - | > quantile(k) | + | |
| - | 0% 25% 50% 75% 100% | + | |
| - | 1.00 2.75 4.50 6.25 8.00 | + | |
| - | > </ | + | |
| - | 그러나, | + | |
| lower quartile: 2.5 | lower quartile: 2.5 | ||
| upper quartile: 6.5 | upper quartile: 6.5 | ||
| Line 41: | Line 43: | ||
| * upper: 43 | * upper: 43 | ||
| + | |||
| + | ===== r method ===== | ||
| in r | in r | ||
| - | < | + | < |
| + | j <- c(1,2,3,4,5) | ||
| + | j <- sort(j) | ||
| + | quantile(j) | ||
| + | </ | ||
| + | |||
| + | < | ||
| + | > j <- c(1,2,3,4,5) | ||
| + | > j <- sort(j) | ||
| > quantile(j) | > quantile(j) | ||
| 0% 25% 50% 75% 100% | 0% 25% 50% 75% 100% | ||
| - | 6.0 25.5 40.0 42.5 49.0 </ | + | |
| + | > | ||
| + | </ | ||
| + | Odd number of elements | ||
| + | * Use the median to divide the ordered data set into two halves. | ||
| + | * If there are an odd number of data points in the original ordered data set, include the median (the central value in the ordered list) in both halves. (가운데 숫자) | ||
| + | |||
| + | |||
| + | < | ||
| + | j2 <- c(1, | ||
| + | j2 <- sort(j2) | ||
| + | quantile(j2) | ||
| + | </ | ||
| + | < | ||
| + | > j2 <- c(1, | ||
| + | > j2 <- sort(j2) | ||
| + | > quantile(j2) | ||
| + | | ||
| + | 1.00 2.25 3.50 4.75 6.00 | ||
| + | > | ||
| + | > | ||
| + | </ | ||
| + | |||
| + | Even number of elements | ||
| + | * If there are an even number of data points in the original ordered data set, split this data set exactly in half. 즉, 3과 4의 가운데 값 (50%) = 3.5 | ||
| + | * lower bound (lower quartile) 앞부분을 반으로 쪼갯을 때의 숫자 (여기서는 2) 더하기, 그 다음숫자와의 차이의 (3-2) 1/4지점 (여기서는 2 + 0.25 = 2.25) 구한다. | ||
| + | * upper bound는 뒷부분의 반인 | ||
| + | |||
| + | < | ||
| + | > j3 <- c(7, 18, 5, 9, 12, 15) | ||
| + | > j3s <- sort(j3) | ||
| + | > j3s | ||
| + | [1] 5 7 9 12 15 18 | ||
| + | > quantile(j3s) | ||
| + | 0% | ||
| + | | ||
| + | > | ||
| + | </ | ||
| + | median = (9+12)/2 | ||
| + | the 1st quartile = 7 + (9-7)*(1/4) = 7 + 0.5 = 7.5 | ||
| + | the 3rd quartile = 12 + (12-9)*(3/ | ||
| ---- | ---- | ||
quartile.1568602345.txt.gz · Last modified: by hkimscil
