r:drawing_sampling_distribution_plot
This is an old revision of the document!
rm(list=ls()) rnorm2 <- function(n,mean,sd){ mean+sd*scale(rnorm(n)) } n.p <- 10000 m.p <- 100 sd.p <- 10 p1 <- rnorm2(n.p, m.p, sd.p) m.p1 <- mean(p1) sd.p1 <- sd(p1) p2 <- rnorm2(n.p, m.p+10, sd.p) m.p2 <- mean(p2) sd.p2 <- sd(p2) n.s <- 100 se.z <- c(sqrt(var(p1)/n.s)) x_values <- seq(mean(p1)-5*se.z, mean(p1)+15*se.z, length.out = 500) # Calculate the probability # density for a normal distribution y_values <- dnorm(x_values, mean = mean(p1), sd = se.z) # Plot the theoretical PDF plot(x_values, y_values, type = "l", lwd=3, main = "Distribution of Sample Means", xlab = "Value", ylab = "Density") m.p1 <- mean(p1) se1 <- c(m.p1-se.z, m.p1+se.z) se2 <- c(m.p1-2*se.z, m.p1+2*se.z) se3 <- c(m.p1-3*se.z, m.p1+3*se.z) abline(v=c(m.p1,se1,se2,se3), col=c('black', 'red', 'red', 'green', 'green', 'blue', 'blue'), lwd=2) treated.s <- sample(p2, n.s) m.treated.s <- mean(treated.s) abline(v=m.treated.s, col='orange', lwd=2) diff <- m.treated.s-mean(p1) diff/se.z # usual way - using sample's variance # instead of p1's variance to get # standard error value se.s <- sqrt(var(treated.s)/n.s) se.s diff/se.s pt(diff/se.s, df=n.s-1, lower.tail = F) * 2 t.test(treated.s, mu=m.p1, var.equal = T)
r/drawing_sampling_distribution_plot.1757542962.txt.gz · Last modified: 2025/09/11 07:22 by hkimscil