r:sampling_distribution
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| r:sampling_distribution [2025/09/10 14:02] – [Last one . . . Important] hkimscil | r:sampling_distribution [2025/09/10 20:41] (current) – [PS1. week02] hkimscil | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ====== PS1. week02 ====== | ====== PS1. week02 ====== | ||
| - | |||
| < | < | ||
| rm(list=ls()) | rm(list=ls()) | ||
| Line 32: | Line 31: | ||
| var(p1) | var(p1) | ||
| - | hist(p1, breaks=100, col=rgb(1, | + | |
| + | hist(p1, breaks=50, col = rgb(1, 1, 1, 0.5), | ||
| + | main = " | ||
| + | abline(v=mean(p1), | ||
| + | hist(p2, add=T, breaks=50, col=rgb(1, | ||
| + | abline(v=mean(p2), | ||
| + | |||
| + | |||
| + | hist(p1, breaks=50, col=rgb(0, | ||
| abline(v=mean(p1), | abline(v=mean(p1), | ||
| abline(v=mean(p1)-sd(p1), | abline(v=mean(p1)-sd(p1), | ||
| Line 90: | Line 97: | ||
| pnorm(1.8)-pnorm(-1.8) | pnorm(1.8)-pnorm(-1.8) | ||
| - | hist(z.p1, breaks=100, col=rgb(0,0,0,0)) | + | hist(z.p1, breaks=50, col=rgb(1,0,0,0)) |
| abline(v=c(m.p1, | abline(v=c(m.p1, | ||
| 1-(pnorm(1.8)-pnorm(-1.8)) | 1-(pnorm(1.8)-pnorm(-1.8)) | ||
| Line 104: | Line 111: | ||
| # | # | ||
| - | hist(p1, breaks=100, col=rgb(1,1,1,1)) | + | hist(p1, breaks=50, col=rgb(.9,.9,.9,.9)) |
| abline(v=mean(p1), | abline(v=mean(p1), | ||
| abline(v=mean(p1)-sd(p1), | abline(v=mean(p1)-sd(p1), | ||
| Line 116: | Line 123: | ||
| c(a, b) | c(a, b) | ||
| c(-1, 1) | c(-1, 1) | ||
| + | # note that | ||
| + | .32/2 | ||
| + | pnorm(-1) | ||
| + | qnorm(.32/ | ||
| + | qnorm(pnorm(-1)) | ||
| # 95% | # 95% | ||
| Line 122: | Line 134: | ||
| c(c, d) | c(c, d) | ||
| c(-2,2) | c(-2,2) | ||
| + | |||
| # 99% | # 99% | ||
| e <- qnorm(.01/ | e <- qnorm(.01/ | ||
| Line 127: | Line 140: | ||
| c(e,f) | c(e,f) | ||
| c(-3,3) | c(-3,3) | ||
| + | |||
| pnorm(b)-pnorm(a) | pnorm(b)-pnorm(a) | ||
| Line 140: | Line 154: | ||
| ################################ | ################################ | ||
| - | hist(p1, breaks=50, col = rgb(1, 0, 0, 0.5), | ||
| - | main = " | ||
| - | abline(v=mean(p1), | ||
| - | hist(p2, add=T, breaks=50, col=rgb(0, | ||
| - | abline(v=mean(p2), | ||
| - | |||
| s.size <- 10 | s.size <- 10 | ||
| Line 170: | Line 178: | ||
| se.s <- sd(means) | se.s <- sd(means) | ||
| - | hist(means, breaks=100, col=rgb(.1, 0, 0, .5)) | + | hist(means, breaks=50, |
| - | abline(v=mean(means), | + | xlim = c(mean(means)-5*sd(means), |
| + | col=rgb(1, | ||
| + | abline(v=mean(means), | ||
| # now we want to get sd of this distribution | # now we want to get sd of this distribution | ||
| lo1 <- mean(means)-se.s | lo1 <- mean(means)-se.s | ||
| Line 180: | Line 189: | ||
| lo3 <- mean(means)-3*se.s | lo3 <- mean(means)-3*se.s | ||
| hi3 <- mean(means)+3*se.s | hi3 <- mean(means)+3*se.s | ||
| - | |||
| - | hist(means, | ||
| - | xlim = c(mean(means)-5*sd(means), | ||
| - | col = rgb(1, 0, 0, .5)) | ||
| abline(v=mean(means), | abline(v=mean(means), | ||
| - | # abline(v=mean(p2), | + | # abline(v=mean(p2), |
| abline(v=c(lo1, | abline(v=c(lo1, | ||
| - | | + | |
| | | ||
| Line 198: | Line 203: | ||
| # sd of sample means (sd(means)) | # sd of sample means (sd(means)) | ||
| - | # is sqrt(var(s1)/ | ||
| - | # sd(s1) / sqrt(s.size) | ||
| # = se.s | # = se.s | ||
| # when iter value goes to | # when iter value goes to | ||
| - | # unlimited | + | # infinite |
| # mean(means) = mean(p1) | # mean(means) = mean(p1) | ||
| # and | # and | ||
| # sd(means) = sd(p1) / sqrt(s.size) | # sd(means) = sd(p1) / sqrt(s.size) | ||
| - | # that is, sd(means) | + | # that is, se.s = se.z |
| # This is called CLT (Central Limit Theorem) | # This is called CLT (Central Limit Theorem) | ||
| + | # see http:// | ||
| + | |||
| mean(means) | mean(means) | ||
| mean(p1) | mean(p1) | ||
| sd(means) | sd(means) | ||
| var(p1) | var(p1) | ||
| + | # remember we started talking sample size 10 | ||
| sqrt(var(p1)/ | sqrt(var(p1)/ | ||
| se.z | se.z | ||
| Line 237: | Line 243: | ||
| - | hist(means, | + | hist(means, breaks=50, |
| xlim = c(mean(means)-5*sd(means), | xlim = c(mean(means)-5*sd(means), | ||
| - | col = rgb(1, | + | col = rgb(1, |
| - | abline(v=mean(means), | + | abline(v=mean(means), |
| # abline(v=mean(p2), | # abline(v=mean(p2), | ||
| abline(v=c(lo1, | abline(v=c(lo1, | ||
| - | | + | |
| | | ||
| Line 257: | Line 263: | ||
| m.sample.i.got | m.sample.i.got | ||
| - | hist(means, | + | hist(means, breaks=30, |
| - | xlim = c(mean(means)-10*sd(means), mean(means)+10*sd(means)), | + | xlim = c(mean(means)-7*sd(means), mean(means)+10*sd(means)), |
| - | col = rgb(1, | + | col = rgb(1, |
| abline(v=mean(means), | abline(v=mean(means), | ||
| abline(v=m.sample.i.got, | abline(v=m.sample.i.got, | ||
| Line 276: | Line 282: | ||
| # (green line) | # (green line) | ||
| tmp <- mean(means) - (m.sample.i.got - mean(means)) | tmp <- mean(means) - (m.sample.i.got - mean(means)) | ||
| - | abline(v=tmp, | + | abline(v=tmp, |
| 2 * pnorm(m.sample.i.got, | 2 * pnorm(m.sample.i.got, | ||
| m.sample.i.got | m.sample.i.got | ||
| ### one more time | ### one more time | ||
| + | # this time, with a story | ||
| mean(p2) | mean(p2) | ||
| sd(p2) | sd(p2) | ||
| Line 287: | Line 294: | ||
| m.sample.i.got | m.sample.i.got | ||
| - | hist(means, | + | tmp <- mean(means) - (m.sample.i.got-mean(means)) |
| - | xlim = c(mean(means)-15*sd(means), | + | tmp |
| - | col = rgb(1, | + | |
| - | abline(v=mean(means), | + | hist(means, breaks=30, |
| - | abline(v=m.sample.i.got, | + | xlim = c(tmp-4*sd(means), |
| + | col = rgb(1, | ||
| + | abline(v=mean(means), | ||
| + | abline(v=m.sample.i.got, | ||
| # what is the probablity of getting | # what is the probablity of getting | ||
| Line 304: | Line 314: | ||
| # mean(means) - m.sample.i.got - mean(means) | # mean(means) - m.sample.i.got - mean(means) | ||
| # (green line) | # (green line) | ||
| - | tmp <- mean(means) - (m.sample.i.got - mean(means)) | + | abline(v=tmp, |
| - | abline(v=tmp, | + | |
| 2 * pnorm(m.sample.i.got, | 2 * pnorm(m.sample.i.got, | ||
| - | |||
| - | |||
| - | |||
| - | |||
| </ | </ | ||
| ====== output ====== | ====== output ====== | ||
| Line 644: | Line 649: | ||
| </ | </ | ||
| <WRAP column half> | <WRAP column half> | ||
| - | .... | + | qnorm |
| * qnorm는 pnorm의 반대값을 구하는 명령어 | * qnorm는 pnorm의 반대값을 구하는 명령어 | ||
| * 히스토그램에서 검정 색 부분의 바깥 쪽 부분은 32%이고 왼 쪽의 것은 이것의 반인 16% 이다. | * 히스토그램에서 검정 색 부분의 바깥 쪽 부분은 32%이고 왼 쪽의 것은 이것의 반인 16% 이다. | ||
r/sampling_distribution.1757480569.txt.gz · Last modified: by hkimscil
