User Tools

Site Tools


variance

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
variance [2020/04/14 14:40] hkimscilvariance [2021/03/03 11:17] – [Variance] hkimscil
Line 1: Line 1:
 +====== Variance ======
 [[Mean]],[[Mode]],[[Median]] 등의 중심경향값과 더불어서 많이 사용되는 [[:Statistics|statistics(통계치)]]로는 데이터가 얼마나 퍼져 있는지 (spread)를 나타내는 것들이 있다. 가장 평이하고 이해하기 쉬운 개념으로는 [[:Range|range(범위)]]가 있으며, 다소 직관적이지는 않지만 여러가지 통계 계산에 사용되는 것으로는 Variance(분산)이 있다. [[Mean]],[[Mode]],[[Median]] 등의 중심경향값과 더불어서 많이 사용되는 [[:Statistics|statistics(통계치)]]로는 데이터가 얼마나 퍼져 있는지 (spread)를 나타내는 것들이 있다. 가장 평이하고 이해하기 쉬운 개념으로는 [[:Range|range(범위)]]가 있으며, 다소 직관적이지는 않지만 여러가지 통계 계산에 사용되는 것으로는 Variance(분산)이 있다.
  
Line 86: Line 86:
   * 마지막으로 위의 분산값이 갖는 의미를 이렇게도 이야기할 수 있다.    * 마지막으로 위의 분산값이 갖는 의미를 이렇게도 이야기할 수 있다. 
     * 어느 정상분포의 (normal distribution) 평균을 알고 있다고 하자.     * 어느 정상분포의 (normal distribution) 평균을 알고 있다고 하자.
-    * 만약에 당신이 각 분포내 각 개인의 값을 예측해야 한다고 할 때, 가장 오차가 작은 예측값을 대는 방법은 평균값으로 예측 값을 쓰는 것이다. 따라서, SS 값은 //(평균값으로 개인의 점수를 예측했을 때 발생하는) 오차의 제곱의 합//을 의미하며, 이 **오차의 제곱합**을 N으로 나눈 값이 분산값이다. +    * 만약에 당신이 각 분포내 각 개인의 값을 예측해야 한다고 할 때, 가장 오차가 작은 예측값을 대는 방법은 평균값으로 예측 값을 쓰는 것이다. 따라서, SS 값은 //(평균값으로 개인의 점수를 예측했을 때 발생하는 개인) 오차의 제곱의 합//을 의미하며, 이 **오차의 제곱합**을 N으로 나눈 값이 분산값이다. 이는 현재로서는 중요하지 않지만, 후에 correlation과 regression을 배울 때 유용한 개념이므로 이해해 두도록 한다. 
  
 따라서 위의 보기에서 들었던 X 변인의 집합에서 분산 값은 1.5이다. 따라서 위의 보기에서 들었던 X 변인의 집합에서 분산 값은 1.5이다.
Line 106: Line 106:
 </code> </code>
  
-분산의 공식을 5명으로 이루어진 집합에 사용하는 것은 큰 무리가 없지만, 100명으로 이루어진 집합에 적용하는 것은 손이 많이 간는 단점이 있다. 따라서, 위의 분산 공식을 변형한 공식을 쓰기도 하는데, 형식만 다를 뿐이지 똑같은 공식이다. +====== 른 공식 ======
  
 +분산의 공식을 5명으로 이루어진 집합에 사용하는 것은 큰 무리가 없지만, 100명으로 이루어진 집합에 적용하는 것은 손이 많이 간다는 단점이 있다. 따라서, 위의 분산 공식을 변형한 공식을 쓰기도 하는데, 형식만 다를 뿐이지 똑같은 공식이다. 
  
-{{anchor:variance_cal}}+<BOOKMARK:variance_cal>
 $ \sigma^2 = \displaystyle \frac{\displaystyle \sum (X_i-\mu)^2}{N}$ 에서 $ \sigma^2 = \displaystyle \frac{\displaystyle \sum (X_i-\mu)^2}{N}$ 에서
  
Line 138: Line 139:
 ====== Read more ====== ====== Read more ======
  
-샘플의 분산으로 모집단의 분산값을 추정할 때에는, 샘플의 숫자인 $n$ 대신에 $n-1$ 을 사용하기도 한다 ((참조. [[:estimated standard deviation]]))((See also,  {{youtube>KkaU2ur3Ymw}})). 샘플의 분산은 $s^2$ 을 기호로 사용한다. +샘플의 분산으로 모집단의 분산값을 추정할 때에는, 샘플의 숫자인 $n$ 대신에 $n-1$ 을 사용한다 (참조. [[:estimated standard deviation]]). 샘플의 분산은 $s^2$ 을 기호로 사용한다. 
  
 $ s^2 = Var[X] = \displaystyle \frac{\displaystyle \sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$ $ s^2 = Var[X] = \displaystyle \frac{\displaystyle \sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$
  
-흔히들 부르기를, 분산 공식의 분자부분을 **Sum of Squares**라고 부르고 줄여서 $SS$라고 쓰고, n-1을 [[degrees of freedom]] 혹은 이를 줄여서 $df$라고 쓴다. 따라서 위의 분산을 구하는 식은 아래와 같이 표현될 수 있다.+위에서 언급한 것처럼, 분산 공식의 분자부분을 **Sum of Squares**라고 부르고 줄여서 $SS$라고 쓰고, n-1을 [[:degrees of freedom]] 혹은 이를 줄여서 $df$라고 쓴다. 따라서 위의 분산을 구하는 식은 아래와 같이 표현될 수 있다.
  
 $$s^2 = \displaystyle \frac{SS}{df}$$ $$s^2 = \displaystyle \frac{SS}{df}$$
variance.txt · Last modified: 2022/09/01 01:50 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki