User Tools

Site Tools


b:head_first_statistics:geometric_binomial_and_poisson_distributions

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
b:head_first_statistics:geometric_binomial_and_poisson_distributions [2023/10/17 18:05] – [What does the Poisson distribution look like?] hkimscilb:head_first_statistics:geometric_binomial_and_poisson_distributions [2023/10/19 18:55] – [Geometric Binomial and Poisson Distributions] hkimscil
Line 1: Line 1:
 ====== Geometric Binomial and Poisson Distributions ====== ====== Geometric Binomial and Poisson Distributions ======
 +정리 
 +\begin{align*}
 +\text{Geometric Distribution:  } \;\;\; \text{X} & \thicksim Geo(p) \\
 +p(X = k) & = q^{k-1} \cdot p \\
 +E\left[ X \right] & = \frac{1}{p} \\
 +V\left[ X \right] & = \frac{q}{p^2} \\
 +\\
 +\text{Binomial Distribution:  } \;\;\; \text{X} & \thicksim B(n, p) \\
 +p(X = r) & = \binom{n}{r} \cdot p^{r} \cdot q^{n-r} \\
 +E\left[ X \right] & = {n}{p} \\
 +V\left[ X \right] & = {n}{p}{q} \\
 +\\
 +\text{Poisson Distribution:  } \;\;\; \text{X} & \thicksim P( \lambda ) \\
 +P(X=r) & = e^{- \lambda} \dfrac{\lambda^{r}} {r!} \\
 +E\left[ X \right] & = \lambda \\
 +V\left[ X \right] & = \lambda \\
 +\end{align*}
 +
 ===== Geometric Distributions ===== ===== Geometric Distributions =====
  
Line 924: Line 942:
  
 ==== From a scratch (Proof of Binomial Expected Value) ==== ==== From a scratch (Proof of Binomial Expected Value) ====
-see [[:The Binomial Theorem]] +[[:Mean and Variance of Binomial Distribution|항분포에서의 기댓값과 분산에 대한 수학적 증명]]Mathematical proof of Binomial Distribution Expected value and Variance
- +
-\begin{eqnarray*} +
-\text{The binomial theorem} &  & \\ +
-(a + b)^{m} & = & \sum^{m}_{y=0}{{m}\choose{y}} a^{y} b^{m-y} \\ +
-\end{eqnarray*} +
- +
-위의 식이 복잡해 보이지만 m = 3 일때의 이항정리식을 말다   +
-\begin{align*} +
-\sum^{m}_{y=0}{{m}\choose{y}} a^{y} b^{m-y} \text{m = 3} \\ +
-\end{align*} +
- +
-\begin{align*} +
-\sum^{3}_{y=0}{{3}\choose{y}} a^{y} b^{3-y}  +
-& = {{3}\choose{0}} a^{0} b^{3-0}  +
-+ {{3}\choose{1}} a^{1} b^{3-1}  +
-+ {{3}\choose{2}} a^{2} b^{3-2}  +
-+ {{3}\choose{3}} a^{y} b^{3-3}  \\ +
-& = 1*a^0*b^3  +
-+ 3*a^1*b^2  +
-+ 3*a^2*b^1   +
-+ 1*a^3*b^0  \\ +
-& = a^3  +
-+ 3 a^2 b^1  +
-+ 3 a^1 b^2   +
-+ b^3  \\ +
-\end{align*} +
- +
- +
-==== For Mean ==== +
-\begin{eqnarray*} +
-E(X) & = & \sum_{x}x p(x) \\ +
-& = & \sum_{x=0}^{n} x {{n}\choose {x}} p^x(1-p)^{n-x}  \\ +
-& = & \sum_{x=0}^{n} x \frac{n!}{x!(n-x)!} p^x(1-p)^{n-x}  \\ +
-\text{note that   } x! = x(x-1)! \\ +
-& = & \sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^x(1-p)^{n-x}  \\ +
-\text{cause we know that E(x) = np,} \\ +
-\text{we extract np outside from summation} \\ +
-\text{note that  } p^x = p * p^{x-1} \\ +
-\text{and  } n! = n * (n-1)! \\ +
-& = & \sum_{x=1}^{n} \frac{\underline{n}*(n-1)!}{(x-1)!(n-x)!} (\underline{p}*p^{x-1})(1-p)^{n-x}  \\ +
-\text{we take out the underlined part} \\ +
-\text{(that is, np) out of the sigma part } \\ +
-& = & np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x}  \\ +
-& = & np \underline{ \sum_{x=1}^{n} {\frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x}}}  \\ +
-\text{we want to check the underlined} \\ +
-\text{part is equal to one so that np is left out} \\ +
-n-x = (n-1)-(x-1) \\ +
-& = & np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!((n-1)-(x-1))!} p^{x-1}(1-p)^{(n-1)-(x-1)}  \\ +
-m = n - 1 \\ +
-y = x - 1 \\ +
-& = & np \sum_{y=0}^{m} \frac{(m)!}{(y)!(m-y))!} p^{y}(1-p)^{(m-y)}  \\ +
-& = & np \sum_{y=0}^{m} \frac{(m)!}{(y)!(m-y))!} p^{y}(1-p)^{(m-y)}  \\ +
-& = & np \sum_{y=0}^{m} {{m}\choose {y}} p^{y}(1-p)^{(m-y)}  \\ +
-\text{Recall that} \\ +
-\sum^{m}_{y=0}{{m}\choose{y}} a^{y} b^{m-y} = (a + b)^{m} \\ +
-& = & np (p + (1-p))^m  \\ +
-& = & np (1)^m  \\ +
-& = & np  \\ +
-\end{eqnarray*} +
- +
-==== For variance ==== +
-\begin{align*} +
-Var(X) & = E[(X-\mu)^2] \\ +
-& = \sum_{x}(x-\mu)^2p(x) \\ +
-\text{We also know that: } \\ +
-E[(X-\mu)^2] & = E(X^2) - [E(X)]^2 \\ +
-\end{align*} +
- +
-\begin{align*} +
-E(X^2) & = \sum_{x=0}^{n} x^2 {{n}\choose{x}} p^x (1-p)^{n-x} \\ +
-& = \sum_{x=0}^{n} x^2 \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \\ +
-\end{align*} +
- +
-그런데 $E(X^2)$ 대신 $E[X(X-1)]$을 생각해보면 +
- +
-\begin{align*} +
-E[X(X-1)] & = \sum_{x=0}^{n} x(x-1) \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \\ +
-& = \sum_{x=2}^{n} \frac{n!}{(x-2)!(n-x)!} p^x (1-p)^{n-x} \\ +
-& = n(n-1)p^2 \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{x-2} (1-p)^{n-x} \\ +
-\text{cause} \\ +
-n - x = (n - 2)-(x - 2) \\ +
-& = n(n-1)p^2 \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!((n-2)-(x-2))!} p^{x-2} (1-p)^{(n-2)-(x-2)} \\ +
-m = n - 2 \\ +
-y = x - 2 \\ +
-& = n(n-1)p^2 \sum_{y=0}^{m} \frac{m!}{y!((m-y))!} p^{y} (1-p)^{(m-y)} \\ +
-& = n(n-1)p^2 \underline {\sum_{y=0}^{m} \frac{m!}{y!((m-y))!} p^{y} (1-p)^{m-y} } \\ +
-& = n(n-1)p^2 \underline {\sum_{y=0}^{m} {{m}\choose{y}} p^{y} (1-p)^{m-y} } \\ +
- +
-\text {we know that the underline part is} \\ +
-(p+(1-p))^m = 1^m \\ +
-& = n(n-1)p^2 (p + (1-p))^m \\ +
-& = n(n-1)p^2 \\ +
-\end{align*} +
-. . . .  +
-\begin{align*} +
-E[X(X - 1)] & = n(n-1)p^2 \\ +
-E[X^2 - X] & = n(n-1)p^2 \\ +
-E[X^2]- E[X] & = n(n-1)p^2 \\ +
-E[X^2]- np & = n(n-1)p^2 \\ +
-E[X^2]& = n(n-1)p^2 + np \\ +
-\\ +
-\end{align*} +
- +
-\begin{align*} +
-Var(X) & = E[X^2] - [E(X)]^2  \\ +
-& = \left[n(n-1)p^2 + np \right] - \left[np \right]^2  \\ +
-& = np[(n-1)p + 1 - np]  \\ +
-& = np[np - p + 1 - np]  \\ +
-& = np(1 - p)  \\ +
-& = npq  \\ +
-\\ +
-\end{align*} +
- +
- +
 ====== Poisson Distribution ====== ====== Poisson Distribution ======
 $$X \sim Po(\lambda)$$ $$X \sim Po(\lambda)$$
Line 1121: Line 1024:
 \end{eqnarray*} \end{eqnarray*}
  
-에서 1 이란 이야기는 아래 그림의 그래프가 전체가 1이 됨을 의미함. 즉 위에서는 1부터 60까지 갔지만, 1부터 무한대로 하면 완전한 분포곡선이 되는데 이것이 1이라는 뜻 (가령 dpois(x=1:10000000000, lambda=30)과 같은 케이스). +에서 1 이란 이야기는 아래 그림의 그래프가 전체가 1이 됨을 의미함. 즉 위에서는 1부터 60까지 갔지만, 1부터 무한대로 하면 완전한 분포곡선이 되는데 이것이 1이라는 뜻 (가령 dpois(x=1:1000, lambda=30)과 같은 케이스). 
  
  
Line 1196: Line 1099:
 > dpois(x=3, lambda=3.4) > dpois(x=3, lambda=3.4)
 [1] 0.2186172 [1] 0.2186172
 +</code>
 +
 +마찬가지로 적어도 3번까지 고장나는 경우는 0, 1, 2, 3을 포함하므로 
 +<code>
 +> sum(dpois(c(0:3), lambda=3.4))
 +[1] 0.5583571
 +
 </code> </code>
  
Line 1282: Line 1192:
 > a*b*c > a*b*c
 [1] 0.03268244 [1] 0.03268244
 +
 +</code>
 +위가 답이긴 하지만 limited calculator 로는 
 +x ~ b (n, p)이고
 +b(100, 0.1)이므로 
 +n*p = 10 = lambda 
 +따라서
 +<code>
 +> dpois(x=15, lambda=10)
 +[1] 0.03471807
  
 </code> </code>
b/head_first_statistics/geometric_binomial_and_poisson_distributions.txt · Last modified: 2023/10/19 19:00 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki