User Tools

Site Tools


b:head_first_statistics:geometric_binomial_and_poisson_distributions

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:geometric_binomial_and_poisson_distributions [2023/10/17 17:56] – [What does the Poisson distribution look like?] hkimscilb:head_first_statistics:geometric_binomial_and_poisson_distributions [2023/10/19 19:00] (current) – [Geometric Binomial and Poisson Distributions] hkimscil
Line 1: Line 1:
 ====== Geometric Binomial and Poisson Distributions ====== ====== Geometric Binomial and Poisson Distributions ======
 +정리 
 +\begin{align*}
 +\text{Geometric Distribution:  } \;\;\; \text{X} & \thicksim Geo(p) \\
 +p(X = k) & = q^{k-1} \cdot p \\
 +E\left[ X \right] & = \frac{1}{p} \\
 +V\left[ X \right] & = \frac{q}{p^2} \\
 +\\
 +\text{Binomial Distribution:  } \;\;\; \text{X} & \thicksim B(n, p) \\
 +p(X = r) & = \binom{n}{r} \cdot p^{r} \cdot q^{n-r} \\
 +E\left[ X \right] & = {n}{p} \\
 +V\left[ X \right] & = {n}{p}{q} \\
 +\\
 +\text{Poisson Distribution:  } \;\;\; \text{X} & \thicksim P( \lambda ) \\
 +P(X=r) & = e^{- \lambda} \cdot \dfrac{\lambda^{r}} {r!} \\
 +E\left[ X \right] & = \lambda \\
 +V\left[ X \right] & = \lambda \\
 +\end{align*}
 +
 ===== Geometric Distributions ===== ===== Geometric Distributions =====
  
Line 924: Line 942:
  
 ==== From a scratch (Proof of Binomial Expected Value) ==== ==== From a scratch (Proof of Binomial Expected Value) ====
-see [[:The Binomial Theorem]] +[[:Mean and Variance of Binomial Distribution|항분포에서의 기댓값과 분산에 대한 수학적 증명]]Mathematical proof of Binomial Distribution Expected value and Variance
- +
-\begin{eqnarray*} +
-\text{The binomial theorem} &  & \\ +
-(a + b)^{m} & = & \sum^{m}_{y=0}{{m}\choose{y}} a^{y} b^{m-y} \\ +
-\end{eqnarray*} +
- +
-위의 식이 복잡해 보이지만 m = 3 일때의 이항정리식을 말다   +
-\begin{align*} +
-\sum^{m}_{y=0}{{m}\choose{y}} a^{y} b^{m-y} \text{m = 3} \\ +
-\end{align*} +
- +
-\begin{align*} +
-\sum^{3}_{y=0}{{3}\choose{y}} a^{y} b^{3-y}  +
-& = {{3}\choose{0}} a^{0} b^{3-0}  +
-+ {{3}\choose{1}} a^{1} b^{3-1}  +
-+ {{3}\choose{2}} a^{2} b^{3-2}  +
-+ {{3}\choose{3}} a^{y} b^{3-3}  \\ +
-& = 1*a^0*b^3  +
-+ 3*a^1*b^2  +
-+ 3*a^2*b^1   +
-+ 1*a^3*b^0  \\ +
-& = a^3  +
-+ 3 a^2 b^1  +
-+ 3 a^1 b^2   +
-+ b^3  \\ +
-\end{align*} +
- +
- +
-==== For Mean ==== +
-\begin{eqnarray*} +
-E(X) & = & \sum_{x}x p(x) \\ +
-& = & \sum_{x=0}^{n} x {{n}\choose {x}} p^x(1-p)^{n-x}  \\ +
-& = & \sum_{x=0}^{n} x \frac{n!}{x!(n-x)!} p^x(1-p)^{n-x}  \\ +
-\text{note that   } x! = x(x-1)! \\ +
-& = & \sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^x(1-p)^{n-x}  \\ +
-\text{cause we know that E(x) = np,} \\ +
-\text{we extract np outside from summation} \\ +
-\text{note that  } p^x = p * p^{x-1} \\ +
-\text{and  } n! = n * (n-1)! \\ +
-& = & \sum_{x=1}^{n} \frac{\underline{n}*(n-1)!}{(x-1)!(n-x)!} (\underline{p}*p^{x-1})(1-p)^{n-x}  \\ +
-\text{we take out the underlined part} \\ +
-\text{(that is, np) out of the sigma part } \\ +
-& = & np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x}  \\ +
-& = & np \underline{ \sum_{x=1}^{n} {\frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x}}}  \\ +
-\text{we want to check the underlined} \\ +
-\text{part is equal to one so that np is left out} \\ +
-n-x = (n-1)-(x-1) \\ +
-& = & np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!((n-1)-(x-1))!} p^{x-1}(1-p)^{(n-1)-(x-1)}  \\ +
-m = n - 1 \\ +
-y = x - 1 \\ +
-& = & np \sum_{y=0}^{m} \frac{(m)!}{(y)!(m-y))!} p^{y}(1-p)^{(m-y)}  \\ +
-& = & np \sum_{y=0}^{m} \frac{(m)!}{(y)!(m-y))!} p^{y}(1-p)^{(m-y)}  \\ +
-& = & np \sum_{y=0}^{m} {{m}\choose {y}} p^{y}(1-p)^{(m-y)}  \\ +
-\text{Recall that} \\ +
-\sum^{m}_{y=0}{{m}\choose{y}} a^{y} b^{m-y} = (a + b)^{m} \\ +
-& = & np (p + (1-p))^m  \\ +
-& = & np (1)^m  \\ +
-& = & np  \\ +
-\end{eqnarray*} +
- +
-==== For variance ==== +
-\begin{align*} +
-Var(X) & = E[(X-\mu)^2] \\ +
-& = \sum_{x}(x-\mu)^2p(x) \\ +
-\text{We also know that: } \\ +
-E[(X-\mu)^2] & = E(X^2) - [E(X)]^2 \\ +
-\end{align*} +
- +
-\begin{align*} +
-E(X^2) & = \sum_{x=0}^{n} x^2 {{n}\choose{x}} p^x (1-p)^{n-x} \\ +
-& = \sum_{x=0}^{n} x^2 \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \\ +
-\end{align*} +
- +
-그런데 $E(X^2)$ 대신 $E[X(X-1)]$을 생각해보면 +
- +
-\begin{align*} +
-E[X(X-1)] & = \sum_{x=0}^{n} x(x-1) \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \\ +
-& = \sum_{x=2}^{n} \frac{n!}{(x-2)!(n-x)!} p^x (1-p)^{n-x} \\ +
-& = n(n-1)p^2 \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{x-2} (1-p)^{n-x} \\ +
-\text{cause} \\ +
-n - x = (n - 2)-(x - 2) \\ +
-& = n(n-1)p^2 \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!((n-2)-(x-2))!} p^{x-2} (1-p)^{(n-2)-(x-2)} \\ +
-m = n - 2 \\ +
-y = x - 2 \\ +
-& = n(n-1)p^2 \sum_{y=0}^{m} \frac{m!}{y!((m-y))!} p^{y} (1-p)^{(m-y)} \\ +
-& = n(n-1)p^2 \underline {\sum_{y=0}^{m} \frac{m!}{y!((m-y))!} p^{y} (1-p)^{m-y} } \\ +
-& = n(n-1)p^2 \underline {\sum_{y=0}^{m} {{m}\choose{y}} p^{y} (1-p)^{m-y} } \\ +
- +
-\text {we know that the underline part is} \\ +
-(p+(1-p))^m = 1^m \\ +
-& = n(n-1)p^2 (p + (1-p))^m \\ +
-& = n(n-1)p^2 \\ +
-\end{align*} +
-. . . .  +
-\begin{align*} +
-E[X(X - 1)] & = n(n-1)p^2 \\ +
-E[X^2 - X] & = n(n-1)p^2 \\ +
-E[X^2]- E[X] & = n(n-1)p^2 \\ +
-E[X^2]- np & = n(n-1)p^2 \\ +
-E[X^2]& = n(n-1)p^2 + np \\ +
-\\ +
-\end{align*} +
- +
-\begin{align*} +
-Var(X) & = E[X^2] - [E(X)]^2  \\ +
-& = \left[n(n-1)p^2 + np \right] - \left[np \right]^2  \\ +
-& = np[(n-1)p + 1 - np]  \\ +
-& = np[np - p + 1 - np]  \\ +
-& = np(1 - p)  \\ +
-& = npq  \\ +
-\\ +
-\end{align*} +
- +
- +
 ====== Poisson Distribution ====== ====== Poisson Distribution ======
 $$X \sim Po(\lambda)$$ $$X \sim Po(\lambda)$$
Line 1121: Line 1024:
 \end{eqnarray*} \end{eqnarray*}
  
-에서 1 이란 이야기는 아래 그림의 그래프가 전체가 1이 됨을 의미함+에서 1 이란 이야기는 아래 그림의 그래프가 전체가 1이 됨을 의미함. 즉 위에서는 1부터 60까지 갔지만, 1부터 무한대로 하면 완전한 분포곡선이 되는데 이것이 1이라는 뜻 (가령 dpois(x=1:1000, lambda=30)과 같은 케이스). 
  
  
Line 1196: Line 1099:
 > dpois(x=3, lambda=3.4) > dpois(x=3, lambda=3.4)
 [1] 0.2186172 [1] 0.2186172
 +</code>
 +
 +마찬가지로 적어도 3번까지 고장나는 경우는 0, 1, 2, 3을 포함하므로 
 +<code>
 +> sum(dpois(c(0:3), lambda=3.4))
 +[1] 0.5583571
 +
 </code> </code>
  
Line 1282: Line 1192:
 > a*b*c > a*b*c
 [1] 0.03268244 [1] 0.03268244
 +
 +</code>
 +위가 답이긴 하지만 limited calculator 로는 
 +x ~ b (n, p)이고
 +b(100, 0.1)이므로 
 +n*p = 10 = lambda 
 +따라서
 +<code>
 +> dpois(x=15, lambda=10)
 +[1] 0.03471807
  
 </code> </code>
b/head_first_statistics/geometric_binomial_and_poisson_distributions.1697532972.txt.gz · Last modified: 2023/10/17 17:56 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki