b:head_first_statistics:using_discrete_probability_distributions
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
b:head_first_statistics:using_discrete_probability_distributions [2025/09/23 14:00] – [확률의 연산] hkimscil | b:head_first_statistics:using_discrete_probability_distributions [2025/09/23 14:17] (current) – hkimscil | ||
---|---|---|---|
Line 329: | Line 329: | ||
Var(X1 + X2 + \ldots Xn) & = & nVar(X) \\ | Var(X1 + X2 + \ldots Xn) & = & nVar(X) \\ | ||
\\ | \\ | ||
- | \text{note that there be k Xs below } \\ | ||
- | Var(X + X + \ldots X) & = & Var(k*X) \\ | ||
- | & = & k^2Var(X) \\ | ||
\end{eqnarray*} | \end{eqnarray*} | ||
Line 346: | Line 343: | ||
\end{eqnarray*} | \end{eqnarray*} | ||
---- | ---- | ||
- | ===== e.gs. ===== | + | ===== e.g. ===== |
Eg. | Eg. | ||
{{discrete.prob.fortune.cookie.eg.jpg? | {{discrete.prob.fortune.cookie.eg.jpg? | ||
Line 355: | Line 351: | ||
p.fc <- c(0.8, 0.1, 0.07, 0.03) | p.fc <- c(0.8, 0.1, 0.07, 0.03) | ||
- | exp.fc <- sum(v.fc*p.fc) | + | exp.fc <- sum(v.fc * p.fc) |
- | var.fc <- sum((v.fc-exp.fc)^2*p.fc) | + | var.fc <- sum((v.fc - exp.fc)^2 * p.fc) |
exp.fc | exp.fc | ||
var.fc | var.fc | ||
Line 365: | Line 361: | ||
p.fc <- c(0.8, 0.1, 0.07, 0.03) | p.fc <- c(0.8, 0.1, 0.07, 0.03) | ||
- | exp.fc2 <- sum(v.fc2*p.fc) | + | exp.fc2 <- sum(v.fc2 * p.fc) |
- | var.fc2 <- sum((v.fc2-exp.fc2)^2*p.fc) | + | var.fc2 <- sum((v.fc2 - exp.fc2)^2 * p.fc) |
exp.fc2 | exp.fc2 | ||
var.fc2 | var.fc2 | ||
Line 407: | Line 403: | ||
\end{eqnarray*} | \end{eqnarray*} | ||
- | ---- | + | ===== e.g.2 ===== |
A restaurant offers two menus, one for weekdays and the other for weekends. Each menu offers four set prices, and the probability distributions for the amount someone pays is as follows: | A restaurant offers two menus, one for weekdays and the other for weekends. Each menu offers four set prices, and the probability distributions for the amount someone pays is as follows: | ||
Line 519: | Line 516: | ||
</ | </ | ||
- | ====== Theorems ====== | + | SEE [[:Expected value and variance |
- | | $E(X)$ | $\sum{X}\cdot P(X=x)$ | + | |
- | | $E(X^2)$ | $\sum{X^{2}}\cdot P(X=x)$ | + | |
- | | $E(aX + b)$ | $aE(X) + b$ | | + | |
- | | $E(f(X))$ | $\sum{f(X)} \cdot P(X=x)$ | + | |
- | | $E(aX - bY)$ | $aE(X)-bE(Y)$ | + | |
- | | $E(X1 + X2 + X3)$ | $E(X) + E(X) + E(X) = 3E(X) \;\;\; $ ((X1, | + | |
- | | $Var(X)$ | $E(X-\mu)^{2} = E(X^{2})-E(X)^{2} \;\;\; $ see $\ref{var.theorem.1} $ | | + | |
- | | $Var(c)$ | + | |
- | | $Var(aX + b)$ | $a^{2}Var(X) \;\;\; $ see $\ref{var.theorem.2}$ and $\ref{var.theorem.3}$ | | + | |
- | | $Var(aX - bY)$ | $a^{2}Var(X) + b^{2}Var(Y)$ see 1 | | + | |
- | | $Var(X1 + X2 + X3)$ | $Var(X) + Var(X) + Var(X) = 3 Var(X) \;\;\; $ ((X1, x2, x3는 동일한 특성을 (statistic, 가령 Xbar = 0, sd=1) 갖는 독립적인 세 집합이다. 따라서 세집합의 분산은 모두 1인 상태이고, | + | |
- | | $Var(X1 + X1 + X1)$ | $Var(3X) = 3^2 Var(X) = 9 Var(X) $ | | + | |
- | + | ||
- | + | ||
- | \begin{eqnarray*} | + | |
- | Var(aX - bY) & = & Var(aX + -bY) \\ | + | |
- | & = & Var(aX) + Var(-bY) \\ | + | |
- | & = & a^{2}Var(X) + b^{2}Var(Y) | + | |
- | \end{eqnarray*} | + | |
- | + | ||
- | see also [[:why n-1]] | + | |
- | ====== Variance Theorem 1 ====== | + | |
- | \begin{align} | + | |
- | Var[X] & = {E{(X-\mu)^2}} | + | |
- | & = E[(X^2 - 2 X \mu + \mu^2)] \nonumber \\ | + | |
- | & = E[X^2] - 2 \mu E[X] + E[\mu^2] \nonumber \\ | + | |
- | & = E[X^2] - 2 \mu E[X] + E[\mu^2], \; \text{because E[X]=} \mu \text{, | + | |
- | & = E[X^2] - 2 \mu^2 + \mu^2 | + | |
- | & = E[X^2] - \mu^2 \nonumber \\ | + | |
- | & = E[X^2] - E[X]^2 \label{var.theorem.1} \tag{variance | + | |
- | \end{align} | + | |
- | + | ||
- | ====== Theorem 2: Why square ====== | + | |
- | + | ||
- | $ \ref{var.theorem.1} $ 에 따르면 | + | |
- | $$ Var[X] = E[X^2] − E[X]^2 $$ | + | |
- | 이므로 | + | |
- | + | ||
- | \begin{align*} | + | |
- | Var[aX] & = & E[a^2X^2] − (E[aX])^2 \\ | + | |
- | & = & a^2 E[X^2] - (a E[X])^2 \\ | + | |
- | & = & a^2 E[X^2] - (a^2 E[X]^2) \\ | + | |
- | & = & a^2 (E[X^2] - (E[X])^2) \\ | + | |
- | & = & a^2 (Var[X]) \label{var.theorem.2} \tag{variance theorem 2} \\ | + | |
- | \end{align*} | + | |
- | ====== Theorem 3: Why Var[X+c] = Var[X] ====== | + | |
- | \begin{align} | + | |
- | Var[X + c] = Var[X] \nonumber | + | |
- | \end{align} | + | |
- | + | ||
- | $ \ref{var.theorem.1} $ 에 따르면 | + | |
- | $$ Var[X] = E[X^2] − E[X]^2 $$ | + | |
- | 이므로 | + | |
- | + | ||
- | \begin{align} | + | |
- | Var[X + c] | + | |
- | = & E[(X+c)^2] - E[X+c]^2 \nonumber \\ | + | |
- | = & E[(X^2 + 2cX + c^2)] \label{tmp.1} \tag{temp 1} \\ | + | |
- | & − E(X + c)E(X + c) \label{tmp.2} \tag{temp 2} \\ | + | |
- | \end{align} | + | |
- | + | ||
- | $ \ref{tmp.1} $ 에서 | + | |
- | \begin{align} | + | |
- | E (X^2 + 2cX + c^2) = E (X^2) + 2cE(X) + c^2 \\ | + | |
- | \end{align} | + | |
- | + | ||
- | 그리고 $\ref{tmp.2}$ 에서 보면 | + | |
- | \begin{align} | + | |
- | E(X + c)E(X + c) = & E(X)(E(X + c)) + E(c)(E(X + c)) \nonumber \\ | + | |
- | = & E(X)^2 + cE(X) + cE(X) + c^2 \nonumber \\ | + | |
- | = & E(X)^2 + 2cE(X) + c^2 \\ | + | |
- | \end{align} | + | |
- | + | ||
- | 위의 둘을 모두 보면 | + | |
- | \begin{align} | + | |
- | Var(X + c) = & E(X^2) + 2cE(X) + c^2 − E(X)^2 − 2cE(X) − c^2 \nonumber \\ | + | |
- | = & E(X^2) − E(X)^2 \nonumber \\ | + | |
- | = & Var(X) \label{var.theorem.3} \tag{variance theorem 3} \\ | + | |
- | \end{align} | + | |
- | + | ||
- | + | ||
- | ====== Theorem 4: Var(c) = 0 ====== | + | |
- | \begin{align} | + | |
- | Var(X) = & 0; \;\;\;\; \text{if | + | |
- | \text{otherwise | + | |
- | Var(X) \ge & 0 \label{var.theorem.42} \tag{variance theorem 4.2} \\ | + | |
- | \end{align} | + | |
- | Variance는 기본적으로 아래와 같다. 이 때 $X=c$ 라고 (c=상수) 하면 | + | |
- | \begin{align} | + | |
- | Var(X) & = E[(X − E(X))^2] \text{ | + | |
- | & = E[(c-c)^2] \nonumber | + | |
- | & = 0 | + | |
- | \text{if X } \ne \text{c, then} \nonumber | + | |
- | & \text{because | + | |
- | & Var(X) \ge 0 \nonumber | + | |
- | \end{align} | + | |
- | + | ||
- | ====== Theorem 5: Var(X+Y) ====== | + | |
- | \begin{align} | + | |
- | Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) \label{var.theorem.51} \tag{variance theorem 5-1} \\ | + | |
- | Var(X − Y) = Var(X) + Var(Y) − 2Cov(X, Y) \label{var.theorem.52} \tag{variance theorem 5-2} \\ | + | |
- | \end{align} | + | |
- | + | ||
- | $ \ref{var.theorem.1} $ 에서 | + | |
- | $$ Var[X] = E[X^2] - E[(X)]^2 | + | |
- | 이므로 X <- X+Y 를 대입해보면 | + | |
- | + | ||
- | \begin{align} | + | |
- | Var[X+Y] = & E[(X + Y)^2] \label{tmp.03} \tag{temp 3} \\ | + | |
- | - & E[(X + Y)]^2 \label{tmp.04} \tag{temp 4} | + | |
- | \end{align} | + | |
- | $\ref{tmp.03}$과 $\ref{tmp.04}$ 는 아래처럼 정리된다 | + | |
- | + | ||
- | \begin{align*} | + | |
- | & E[(X + Y)^2] = E[X^2 + 2XY + Y^2] = E[X^2] + 2E[XY] + E[Y^2] \\ | + | |
- | - & [E(X + Y)]^2 = [E(X) + E(Y)]^2 = E(X)^2 + 2E(X)E(Y) + E(Y)^2 \\ | + | |
- | \end{align*} | + | |
- | + | ||
- | 각 줄의 가장 오른쪽 정리식을 보면, | + | |
- | + | ||
- | \begin{align*} | + | |
- | Var[(X+Y)] = | + | |
- | & E[X^2] & + & 2E[XY] & + & E[Y^2] \\ | + | |
- | - & E(X)^2 & - & 2E(X)E(Y) & - & E(Y)^2 \\ | + | |
- | & Var[X] & + & 2 E[XY]-2E(X)E(Y) & + & Var[Y] \\ | + | |
- | \end{align*} | + | |
- | + | ||
- | 가운데 부분은 | + | |
- | \begin{align} | + | |
- | E(XY)- E(X)E(Y) = Cov[X,Y] \label{cov} \tag{covariance} \\ | + | |
- | \end{align} | + | |
- | + | ||
- | 따라서 | + | |
- | \begin{align*} | + | |
- | Var[(X+Y)] = Var[X] + 2 Cov[X,Y] + Var[Y] \\ | + | |
- | \end{align*} | + | |
- | + | ||
- | + | ||
- | ====== Questions ====== | + | |
- | Which one is correct? | + | |
- | + | ||
- | \begin{align} | + | |
- | Var(X+X) & = Var(X) + Var(X) & = 2 * Var(X) | + | |
- | Var(X+X) & = Var(2X) & = 2^2 * Var(X) \label{tmp.06} \tag{2} | + | |
- | \end{align} | + | |
- | + | ||
- | $\ref{var.theorem.51}$ 을 다시 보면 | + | |
- | \begin{align*} | + | |
- | Var(X+Y) = Var(X) + 2 Cov(X,Y) + Var(Y) \\ | + | |
- | \end{align*} | + | |
- | + | ||
- | X와 Y가 independent 한 event라고 (group) 하면 | + | |
- | $ Cov(X,Y) = 0 $ 이므로 | + | |
- | \begin{align*} | + | |
- | Var[(X+Y)] = Var[X] + Var[Y] \\ | + | |
- | \end{align*} | + | |
- | + | ||
- | 보통 X1, X2 집합은 같은 특성을 (statistic) 갖는 두 독립적인 집합을 의미하므로 | + | |
- | \begin{align*} | + | |
- | Var(X1 + X2) = Var(X1) + Var(X2) | + | |
- | \end{align*} | + | |
- | + | ||
- | X1, X2는 같은 분포를 갖는 서로 독립적인 집합이고 (가령 각 집합은 n=10000이고 mean=0, var=4의 특성을 갖는) 이 때의 두 집합을 합한 집합의 Variance는 각 Variance를 더한 값과 같다는 뜻. 반면에 아래는 동일한 집합을 선형적인 관계로 옮긴 것 (X to 2X). | + | |
- | + | ||
- | \begin{align} | + | |
- | Var(X1 + X1) & = Var(2*X1) \nonumber \\ | + | |
- | & = 2^2 Var(X1) \nonumber \\ | + | |
- | & = 4 Var(X1) | + | |
- | \end{align} | + | |
- | + | ||
- | 따라서 수식 $(\ref{tmp.06})$ 가 참이다. | + | |
- | 이것은 아래처럼 생각해 볼 수도 있다. | + | |
- | + | ||
- | $\ref{var.theorem.51}$ 에서 $Y$ 대신에 $X$를 대입하면 | + | |
- | \begin{align*} | + | |
- | Var(X + X) & = Var(X) + 2 Cov(X, X) + Var(X) | + | |
- | & \;\;\;\;\; \text{because } \\ | + | |
- | & \;\;\;\;\; \text{according to the below } \ref{cov.xx}, | + | |
- | & \;\;\;\;\; Cov(X,X) = Var(X) \\ | + | |
- | & = Var(X) + 2 Var(X) + Var(X) | + | |
- | & = 4 Var(X) | + | |
- | \end{align*} | + | |
- | + | ||
- | \begin{align} | + | |
- | Cov[X,Y] & = E(XY) - E(X)E(Y) \nonumber \\ | + | |
- | Cov[X,X] & = E(XX) - E(X)E(X) \nonumber \\ | + | |
- | & = E(X^2) - E(X)^2 \nonumber \\ | + | |
- | & = V(X) \label{cov.xx} \tag{3} | + | |
- | \end{align} | + | |
- | ====== e.gs in R ====== | + | |
- | R에서 이를 살펴보면 | + | |
- | < | + | |
- | # variance theorem 4-1, 4-2 | + | |
- | # http:// | + | |
- | # need a function, rnorm2 | + | |
- | rnorm2 <- function(n, | + | |
- | + | ||
- | m <- 0 | + | |
- | v <- 1 | + | |
- | n <- 10000 | + | |
- | set.seed(1) | + | |
- | x1 <- rnorm2(n, m, sqrt(v)) | + | |
- | x2 <- rnorm2(n, m, sqrt(v)) | + | |
- | x3 <- rnorm2(n, m, sqrt(v)) | + | |
- | + | ||
- | m.x1 <- mean(x1) | + | |
- | m.x2 <- mean(x2) | + | |
- | m.x3 <- mean(x3) | + | |
- | m.x1 | + | |
- | m.x2 | + | |
- | m.x3 | + | |
- | + | ||
- | v.x1 <- var(x1) | + | |
- | v.x2 <- var(x2) | + | |
- | v.x3 <- var(x3) | + | |
- | v.x1 | + | |
- | v.x2 | + | |
- | v.x3 | + | |
- | + | ||
- | v.12 <- var(x1 + x2) | + | |
- | v.12 | + | |
- | ###################################### | + | |
- | ## v.12 should be near var(x1)+var(x2) | + | |
- | ###################################### | + | |
- | ## 정확히 2*v가 아닌 이유는 x1, x2가 | + | |
- | ## 아주 약간은 (random하게) dependent하기 때문 | + | |
- | ##(혹은 상관관계가 있기 때문) | + | |
- | ## theorem 5-1 에서 | + | |
- | ## var(x1+x2) = var(x1)+var(x2)+ (2*cov(x1, | + | |
- | + | ||
- | cov.x1x2 <- cov(x1, | + | |
- | + | ||
- | var(x1 + x2) | + | |
- | var(x1) + var(x2) + (2*cov.x1x2) | + | |
- | + | ||
- | # theorem 5-2 도 확인 | + | |
- | var(x1 - x2) | + | |
- | var(x1) + var(x2) - (2 * cov.x1x2) | + | |
- | + | ||
- | # only when x1, x2 are independent (orthogonal) | + | |
- | # var(x1+x2) == var(x1) + var(x2) | + | |
- | ######################################## | + | |
- | + | ||
- | ## 그리고 동일한 (독립적이지 않은) 집합 X1에 대해서는 | + | |
- | v.11 <- var(x1 + x1) | + | |
- | # var(2*x1) = 2^2 var(X1) | + | |
- | v.11 | + | |
- | + | ||
- | </ | + | |
- | + | ||
b/head_first_statistics/using_discrete_probability_distributions.1758603628.txt.gz · Last modified: 2025/09/23 14:00 by hkimscil