c:ma:2018:schedule
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| c:ma:2018:schedule [2018/11/27 01:44] – hkimscil | c:ma:2018:schedule [2018/12/17 10:01] (current) – [Week15 (Dec. 11, 14)] hkimscil | ||
|---|---|---|---|
| Line 435: | Line 435: | ||
| <WRAP half column> | <WRAP half column> | ||
| ===== Concepts and ideas ===== | ===== Concepts and ideas ===== | ||
| - | [[:Regression]] [[:Multiple Regression]] | + | Do the following |
| - | [[:r:Linear Regression]] and [[:r:ANOVA]] | + | < |
| - | - Introduction | + | 98, 87, 94, 77, 87, 98, 85, 89, 95, 85, 93, 93, |
| - | - Performing Simple Linear Regression | + | 97, 71, 97, 93, 75, 68, 98, 95, 79, 94, 98, 95) |
| - | - Performing Multiple Linear Regression | + | S2 <- c(60, 98, 94, 95, 99, 97, 100, 73, 93, 91, 98, |
| - | - Getting Regression Statistics | + | 86, 66, 83, 77, 97, 91, 93, 71, 91, 95, 100, |
| - | | + | 72, 96, 91, 76, 100, 97, 99, 95, 97, 77, 94, |
| - | - Performing Linear Regression Without an Intercept | + | 99, 88, 100, 94, 93, 86) |
| - | | + | S3 <- c(95, 86, 90, 90, 75, 83, 96, 85, 83, 84, 81, 98, |
| - | | + | 77, 94, 84, 89, 93, 99, 91, 77, 95, 90, 91, 87, |
| - | | + | 85, 76, 99, 99, 97, 97, 97, 77, 93, 96, 90, 87, |
| - | | + | 97, 88) |
| - | - Regressing on a Polynomial | + | S4 <- c(67, 93, 63, 83, 87, 97, 96, 92, 93, 96, 87, 90, |
| - | - Regressing on Transformed Data | + | 94, 90, 82, 91, 85, 93, 83, 90, 87, 99, 94, 88, |
| - | - Finding | + | 90, 72, 81, 93, 93, 94, 97, 89, 96, 95, 82, 97) |
| - | - Forming Confidence Intervals for Regression Coefficients | + | |
| - | - Plotting Regression Residuals | + | scores <- list(S1=S1, |
| - | - Diagnosing a Linear Regression | + | |
| - | - Identifying Influential Observations | + | * find means for each element in " |
| - | - Testing Residuals for Autocorrelation | + | * find standard deviation for each element in " |
| - | - Predicting New Values | + | * find variance |
| - | | + | |
| - | | + | < |
| - | | + | |
| - | | + | |
| - | - Performing Robust ANOVA (Kruskal? | + | |
| - | | + | * make " |
| + | * name columns " | ||
| + | * name rows " | ||
| + | * get means for each subject | ||
| + | * attach the above data to the matrix data and name it " | ||
| + | * get standard deviation for each trial | ||
| + | * attach the above data to the matrix data, " | ||
| + | |||
| + | |||
| + | < | ||
| + | * get subrubs data as the above | ||
| + | * get population means by each state (listed in the data, suburbs) | ||
| + | * use aggregate and refer to the below e.g. | ||
| + | < | ||
| + | aggregate(MPG.city ~ Origin, Cars93, mean)</ | ||
| + | * get population sum by each county with tapply function. | ||
| + | * tapply(number, | ||
| + | * how many counties are there? | ||
| + | * Use Cars93 data, get MPG.city mean by Origin. | ||
| + | |||
| + | __Using pnorm, qnorm__ | ||
| + | pnorm : get proportion out of normal distribution whose characteristics are mean and sd | ||
| + | < | ||
| + | * What is the value of the below? | ||
| + | < | ||
| + | * How would you get 68, 95, 99% from pnorm | ||
| + | * use ?pnorm and see the default option | ||
| + | |||
| + | * generate 10 random numbers with runif function | ||
| + | |||
| + | < | ||
| + | world.series <- data.frame(year)</ | ||
| + | * get 10 year samples out of world.series data with " | ||
| + | * how would you get the sample sample again latter? | ||
| + | |||
| + | < | ||
| + | * What would be the result from the above? | ||
| + | |||
| + | < | ||
| + | tbl = table(survey$Smoke, | ||
| + | tbl # the contingency table</ | ||
| + | |||
| + | < | ||
| + | </ | ||
| + | * read the above output and interpret | ||
| + | * what about the below one? | ||
| + | < | ||
| + | </ | ||
| + | |||
| + | see first [[:chi-square test]] | ||
| + | see [[:r:chi-square test]] in r document space for more | ||
| + | |||
| + | < | ||
| + | | ||
| + | | ||
| + | </ | ||
| + | | ||
| + | |||
| + | < | ||
| + | dur</ | ||
| + | | ||
| + | | ||
| + | | ||
| + | |||
| + | < | ||
| + | set.seed(1123) | ||
| + | x <- rnorm(50, mean=100, sd=15) | ||
| + | </ | ||
| + | | ||
| + | | ||
| + | | ||
| + | | ||
| + | |||
| + | < | ||
| + | |||
| + | > t.test(a, mu=60) | ||
| + | |||
| + | One Sample t-test | ||
| + | |||
| + | data: a | ||
| + | t = 2.3079, df = 9, p-value = 0.0464 | ||
| + | alternative hypothesis: true mean is not equal to 60 | ||
| + | 95 percent confidence interval: | ||
| + | | ||
| + | sample estimates: | ||
| + | mean of x | ||
| + | 71.2 | ||
| + | </ | ||
| + | * find the t critical value with function qt. | ||
| + | * explain what happens in the next code | ||
| + | * read (or remind) what pnorm and qnorm do. | ||
| + | < | ||
| + | > m <- mean(x) | ||
| + | > n <- length(x) | ||
| + | > n | ||
| + | [1] 50 | ||
| + | > m | ||
| + | [1] 96.00386 | ||
| + | > s | ||
| + | [1] 17.38321 | ||
| + | > SE <- s / sqrt(n) | ||
| + | > SE | ||
| + | [1] 2.458358 | ||
| + | > E <- qt(.975, df=n-1)*SE | ||
| + | > E | ||
| + | [1] 4.940254 | ||
| + | > m + c(-E, E) | ||
| + | [1] 91.0636 100.9441 | ||
| + | > </ | ||
| + | |||
| + | |||
| + | | ||
| + | < | ||
| + | |||
| + | < | ||
| + | | ||
| + | | ||
| + | * use t.test | ||
| + | * "use var.equal=T" | ||
| + | |||
| + | < | ||
| + | b = c(185, 169, 173, 173, 188, 186, 175, 174, 179, 180) | ||
| + | </ | ||
| + | | ||
| + | * convert colnames into score and trans | ||
| + | * t.test score by trans with var.equal option true. | ||
| + | * aov test | ||
| + | * see t.test t value, t = -0.9474 and F value, | ||
| </ | </ | ||
| <WRAP half column> | <WRAP half column> | ||
| Line 472: | Line 600: | ||
| <WRAP half column> | <WRAP half column> | ||
| ===== Concepts and ideas ===== | ===== Concepts and ideas ===== | ||
| + | ANOVA | ||
| + | [[:r:oneway anova]] | ||
| + | [[:r:twoway anova]] | ||
| + | [[:r:linear regression]] | ||
| + | [[: | ||
| + | [[:partial and semipartial correlation]] | ||
| + | |||
| + | [[: | ||
| + | [[: | ||
| + | |||
| + | |||
| + | [[:factor analysis]] | ||
| + | |||
| Linear Regression and ANOVA | Linear Regression and ANOVA | ||
| http:// | http:// | ||
| - | [[: | + | |
| </ | </ | ||
| <WRAP half column> | <WRAP half column> | ||
| ===== Assignment ===== | ===== Assignment ===== | ||
| - | - 자신의 전공과 관심사에 맞는 아래의 테스트를 수행하기 위한 가설을 작성하시오. | ||
| - | - T-test | ||
| - | - F-test | ||
| - | - factorial f-test | ||
| - | - Simple regression | ||
| - | - Multiple regression | ||
| - | - 각 가설의 독립변인과 종속변인을 밝히고 이를 측정하는 방법에 대해서 논하시오. | ||
| - | - 가설과 관련이 있는 논문을 찾아서 (적어도 하나 이상씩) 관련 논문이 밝힌 것을 설명하고 자신의 가설과의 연관성을 논하시오. | ||
| - | - 각 가설에 필요한 데이터를 구한 후, 적절한 테스를 하시오 (r의 인풋과 아웃풋 필요). | ||
| - | - 테스트 결과를 논하시오. | ||
| </ | </ | ||
| ====== Week15 (Dec. 11, 14) ====== | ====== Week15 (Dec. 11, 14) ====== | ||
| <WRAP half column> | <WRAP half column> | ||
| - | Group Presentation | + | Final quiz |
| + | Part I (필기시험): | ||
| + | * [[: | ||
| + | * [[: | ||
| + | * [[:multiple regression]] | ||
| + | * [[: | ||
| + | * [[:factor analysis]] - 이론적인 이해와 관련된 부분 | ||
| + | * r 과 관련된 내용 중 통계에 대한 이해와 관련된 부분, 예를 들면 | ||
| + | * t-test, ANOVA, Factorial | ||
| + | * regression, multiple regression output에 대한 이해 등 | ||
| + | Part II (r 실기시험): | ||
| + | * [[: | ||
| + | * [[: | ||
| + | * [[: | ||
| + | * [[:r:input output]] | ||
| + | * [[:r:data structures]] | ||
| + | * [[:r:data transformations]] | ||
| + | * [[: | ||
| + | * [[: | ||
| + | * [[: | ||
| + | * [[: | ||
| + | * [[:r:linear regression]] | ||
| + | * [[: | ||
| + | * [[:partial and semipartial correlation]] | ||
| + | * [[: | ||
| </ | </ | ||
| <WRAP half column> | <WRAP half column> | ||
| </ | </ | ||
| - | <WRAP half column> | ||
| ====== Week16 (Dec. 18, 21) ====== | ====== Week16 (Dec. 18, 21) ====== | ||
| - | Group Presentation | + | <WRAP half column> |
| __**Final-term**__ | __**Final-term**__ | ||
| </ | </ | ||
c/ma/2018/schedule.1543250660.txt.gz · Last modified: by hkimscil
