User Tools

Site Tools


chain_rules

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
chain_rules [2025/08/04 21:10] – created hkimscilchain_rules [2025/08/22 13:19] (current) – [e.g.] hkimscil
Line 5: Line 5:
 y & =& f(g(x)) \\ y & =& f(g(x)) \\
 \frac {dy}{dx} & = & \frac {dy}{dt} * \frac {dt}{dx}  \\ \frac {dy}{dx} & = & \frac {dy}{dt} * \frac {dt}{dx}  \\
-&  & \frac {dy}{dt} = f'(t) = f'(g(x)) \\ +&  & \frac {dy}{dt} = f'(t) = f'(g(x)) \;\; \text{and \\ 
-&  & \because{ \frac {dt}{dx} = g'(x) \\ +&  & \frac {dt}{dx} = g'(x) \\ 
-&  & \frac {dy}{dx} = f'(g(x)) * g'(x) \\+\therefore{ \;\; } \frac {dy}{dx} f'(g(x)) * g'(x) \\
 \end{eqnarray*} \end{eqnarray*}
  
 +====== E.g ======
 \begin{eqnarray*} \begin{eqnarray*}
 y & = & (2x^2 + 1)^2 \\ y & = & (2x^2 + 1)^2 \\
Line 15: Line 16:
 y & = & t^2 \\ y & = & t^2 \\
 t & = & 2x^2 + 1 \\ t & = & 2x^2 + 1 \\
-y' & = & 2t \\ +\\ 
-t' & = & 4x \\ +&\phantom{=}\, \frac{dy}{dt} 2t \\ 
-\frac{dy}{dx} & = & \frac{dy}{dt\frac{dt}{dx} \\ +&\phantom{=}\, = 2 (2x^2 + 1) \\ 
-\frac{dy}{dx} & = & 2(t^{2-1}} * 4 x^{2-1\\ +&\phantom{=}\, & = (4x^2 + 2) \\  
-& = & 2(2x^2 + 1) * 4x \\+\\ 
 +&\phantom{=}\, \frac{dt}{dx} & = 4x \\ 
 +\\ 
 +\frac{dy}{dx} & = & \frac{dy}{dt}*\frac{dt}{dx} \\ 
 & = & (4x^2 + 2) * 4x \\ & = & (4x^2 + 2) * 4x \\
-& = & 16x^3 + 8x \\ -  +& = & 16x^3 + 8x \\
-y & =& f(g(x)) \\ +
-\frac {dy}{dx} & = & \frac {dy}{dt} * \frac {dt}{dx}  \\ +
-&  & \frac {dy}{dt} = f'(t) = f'(g(x)) \\ +
-&  & \because{ \frac {dt}{dx} = g'(x) } \\ +
-&  & \frac {dy}{dx} = f'(g(x)) * g'(x) \\+
 \end{eqnarray*} \end{eqnarray*}
  
 +====== e.g. ======
 +see [[:gradient descent]]
 +\begin{eqnarray*}
 +\because{ \;\; } \text{predicted value } \; \hat{y} & = & a + b x \\
 +\text{and }\;\;  \text{residual} & = & y - \hat{y} \\
 +\therefore{} \;\; \text{residual}^2 & = & (y - (a + b x)) \\
 +\therefore{} \sum{\text{residual}^2} & = & \sum{(y - (a + b x))^2} \\
 +& = & \text{SSE,  sum of square residuals} \\
 +\\
 +\dfrac{\text{dSSE}}{\text{da}} & = &  \\
 +
 +\end{eqnarray*}
 +
 +y.hat = a + b * x 
 +a = intercept 
 +residuals = (y - y.hat)
 +d.sum.of.residuals^2 / d.intercept 
 += d.sum.of.residuals^2 / d.sum.of.residuals * d.sum.of.residuals / d.intercept
 += (2 * residual) *  d(y - y.hat)/d.intercept
 += (2 * residual) *  d(y - (a + bx))
 += (2 * residual) *  d(y - a - bx)
 += (2 * residual) *  -1
 += -2 * residual
 +
 +y.hat = a + b * x 
 +b = slope
 +d.sum.of.square.res / d.slope
 += d.sum.of.square.res / d.sum.of.res * d.sum.of.res / d.slope
 += d.sum.of.square.res / d.slope
 += (2 * residual) * d(y - a - bx)
 += (2 * residual) * - x
 += - 2 * x * residual
  
chain_rules.1754309400.txt.gz · Last modified: 2025/08/04 21:10 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki