User Tools

Site Tools


chain_rules

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
chain_rules [2025/08/04 22:38] hkimscilchain_rules [2025/08/22 13:19] (current) – [e.g.] hkimscil
Line 5: Line 5:
 y & =& f(g(x)) \\ y & =& f(g(x)) \\
 \frac {dy}{dx} & = & \frac {dy}{dt} * \frac {dt}{dx}  \\ \frac {dy}{dx} & = & \frac {dy}{dt} * \frac {dt}{dx}  \\
-&  & \frac {dy}{dt} = f'(t) = f'(g(x)) \\ +&  & \frac {dy}{dt} = f'(t) = f'(g(x)) \;\; \text{and \\ 
-&  & \because{ \frac {dt}{dx} = g'(x) \\ +&  & \frac {dt}{dx} = g'(x) \\ 
-&  & \frac {dy}{dx} = f'(g(x)) * g'(x) \\+\therefore{ \;\; } \frac {dy}{dx} f'(g(x)) * g'(x) \\
 \end{eqnarray*} \end{eqnarray*}
  
 +====== E.g ======
 \begin{eqnarray*} \begin{eqnarray*}
 y & = & (2x^2 + 1)^2 \\ y & = & (2x^2 + 1)^2 \\
 t & = & 2x^2 + 1 \\ t & = & 2x^2 + 1 \\
-y & = & t^2 \\b+y & = & t^2 \\
 t & = & 2x^2 + 1 \\ t & = & 2x^2 + 1 \\
-\frac{dy}{dt} & = 2t \\ +\\ 
-& = & 2 (2x^2 + 1) \\ +&\phantom{=}\, \frac{dy}{dt} & = 2t \\ 
-& = & (4x^2 + 2) \\  +&\phantom{=}\, 2 (2x^2 + 1) \\ 
-\frac{dt}{dx} & = 4x \\ +&\phantom{=}\, (4x^2 + 2) \\  
-\therefore{}+\\ 
 +&\phantom{=}\, \frac{dt}{dx} & = 4x \\ 
 +\\
 \frac{dy}{dx} & = & \frac{dy}{dt}*\frac{dt}{dx} \\  \frac{dy}{dx} & = & \frac{dy}{dt}*\frac{dt}{dx} \\ 
 & = & (4x^2 + 2) * 4x \\ & = & (4x^2 + 2) * 4x \\
Line 26: Line 29:
  
 ====== e.g. ====== ====== e.g. ======
-y.hat = a + * x +see [[:gradient descent]] 
 +\begin{eqnarray*} 
 +\because{ \;\; } \text{predicted value } \; \hat{y} & = & a + b x \\ 
 +\text{and }\;\;  \text{residual} & = & y - \hat{y} \\ 
 +\therefore{} \;\; \text{residual}^2 & = & (y - (a + b x)) \\ 
 +\therefore{} \sum{\text{residual}^2} & = & \sum{(y - (a + b x))^2} \\ 
 +& = & \text{SSE,  sum of square residuals} \\ 
 +\\ 
 +\dfrac{\text{dSSE}}{\text{da}} & = &  \\ 
 + 
 +\end{eqnarray*} 
 + 
 +y.hat = a + * x 
 a = intercept  a = intercept 
 residuals = (y - y.hat) residuals = (y - y.hat)
 d.sum.of.residuals^2 / d.intercept  d.sum.of.residuals^2 / d.intercept 
 = d.sum.of.residuals^2 / d.sum.of.residuals * d.sum.of.residuals / d.intercept = d.sum.of.residuals^2 / d.sum.of.residuals * d.sum.of.residuals / d.intercept
-= (2 * residual) *  += (2 * residual) *  d(y - y.hat)/d.intercept 
 += (2 * residual) *  d(y - (a + bx)) 
 += (2 * residual) *  d(y - a - bx) 
 += (2 * residual) *  -1 
 += -2 * residual 
 + 
 +y.hat = a + b * x  
 +b = slope 
 +d.sum.of.square.res / d.slope 
 += d.sum.of.square.res / d.sum.of.res * d.sum.of.res / d.slope 
 += d.sum.of.square.res / d.slope 
 += (2 * residual) * d(y - a - bx) 
 += (2 * residual) * - x 
 += - 2 * x * residual 
chain_rules.1754314696.txt.gz · Last modified: 2025/08/04 22:38 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki