chain_rules
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| chain_rules [2025/08/04 22:38] – hkimscil | chain_rules [2025/08/22 13:19] (current) – [e.g.] hkimscil | ||
|---|---|---|---|
| Line 5: | Line 5: | ||
| y & =& f(g(x)) \\ | y & =& f(g(x)) \\ | ||
| \frac {dy}{dx} & = & \frac {dy}{dt} * \frac {dt}{dx} | \frac {dy}{dx} & = & \frac {dy}{dt} * \frac {dt}{dx} | ||
| - | & & \frac {dy}{dt} = f'(t) = f' | + | & & \frac {dy}{dt} = f'(t) = f' |
| - | & & \because{ | + | & & \frac {dt}{dx} = g'(x) \\ |
| - | & & \frac {dy}{dx} = f' | + | \therefore{ \;\; } \frac {dy}{dx} |
| \end{eqnarray*} | \end{eqnarray*} | ||
| + | ====== E.g ====== | ||
| \begin{eqnarray*} | \begin{eqnarray*} | ||
| y & = & (2x^2 + 1)^2 \\ | y & = & (2x^2 + 1)^2 \\ | ||
| t & = & 2x^2 + 1 \\ | t & = & 2x^2 + 1 \\ | ||
| - | y & = & t^2 \\b | + | y & = & t^2 \\ |
| t & = & 2x^2 + 1 \\ | t & = & 2x^2 + 1 \\ | ||
| - | \frac{dy}{dt} & = & 2t \\ | + | \\ |
| - | & = & 2 (2x^2 + 1) \\ | + | & |
| - | & = & (4x^2 + 2) \\ | + | &\phantom{=}\, & = 2 (2x^2 + 1) \\ |
| - | \frac{dt}{dx} & = & 4x \\ | + | &\phantom{=}\, & = (4x^2 + 2) \\ |
| - | \therefore{} | + | \\ |
| + | & | ||
| + | \\ | ||
| \frac{dy}{dx} & = & \frac{dy}{dt}*\frac{dt}{dx} \\ | \frac{dy}{dx} & = & \frac{dy}{dt}*\frac{dt}{dx} \\ | ||
| & = & (4x^2 + 2) * 4x \\ | & = & (4x^2 + 2) * 4x \\ | ||
| Line 26: | Line 29: | ||
| ====== e.g. ====== | ====== e.g. ====== | ||
| - | y.hat = a + 1 * x | + | see [[:gradient descent]] |
| + | \begin{eqnarray*} | ||
| + | \because{ \;\; } \text{predicted value } \; \hat{y} & = & a + b x \\ | ||
| + | \text{and }\;\; \text{residual} & = & y - \hat{y} \\ | ||
| + | \therefore{} \;\; \text{residual}^2 & = & (y - (a + b x)) \\ | ||
| + | \therefore{} \sum{\text{residual}^2} & = & \sum{(y - (a + b x))^2} \\ | ||
| + | & = & \text{SSE, | ||
| + | \\ | ||
| + | \dfrac{\text{dSSE}}{\text{da}} & = & \\ | ||
| + | |||
| + | \end{eqnarray*} | ||
| + | |||
| + | y.hat = a + b * x | ||
| a = intercept | a = intercept | ||
| residuals = (y - y.hat) | residuals = (y - y.hat) | ||
| d.sum.of.residuals^2 / d.intercept | d.sum.of.residuals^2 / d.intercept | ||
| = d.sum.of.residuals^2 / d.sum.of.residuals * d.sum.of.residuals / d.intercept | = d.sum.of.residuals^2 / d.sum.of.residuals * d.sum.of.residuals / d.intercept | ||
| - | = (2 * residual) * | + | = (2 * residual) * |
| + | = (2 * residual) * d(y - (a + bx)) | ||
| + | = (2 * residual) * d(y - a - bx) | ||
| + | = (2 * residual) * -1 | ||
| + | = -2 * residual | ||
| + | |||
| + | y.hat = a + b * x | ||
| + | b = slope | ||
| + | d.sum.of.square.res / d.slope | ||
| + | = d.sum.of.square.res / d.sum.of.res * d.sum.of.res / d.slope | ||
| + | = d.sum.of.square.res / d.slope | ||
| + | = (2 * residual) * d(y - a - bx) | ||
| + | = (2 * residual) * - x | ||
| + | = - 2 * x * residual | ||
chain_rules.1754314696.txt.gz · Last modified: by hkimscil
