multicolinearity
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| multicolinearity [2018/12/26 02:15] – hkimscil | multicolinearity [2018/12/26 02:49] (current) – [regression test with factors] hkimscil | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | ====== Multi-colinearity ====== | + | ====== Multi-colinearity |
| + | required library: | ||
| + | * corrplot | ||
| + | * mctest | ||
| + | * omcdiag | ||
| + | * imcdiag | ||
| + | |||
| < | < | ||
| > cps <- read.csv(" | > cps <- read.csv(" | ||
| Line 70: | Line 77: | ||
| > library(corrplot) | > library(corrplot) | ||
| > cps.cor = cor(cps) | > cps.cor = cor(cps) | ||
| - | > corrplot.mixed(cps.cor, | + | > corrplot.mixed(cps.cor, |
| </ | </ | ||
| - | {{cps.corplot.png}} | + | {{cps.corrplot.png?500}} |
| < | < | ||
| Line 133: | Line 140: | ||
| < | < | ||
| + | > round(pcor(cps[, | ||
| + | | ||
| + | education | ||
| + | south -0.0318 | ||
| + | sex | ||
| + | experience | ||
| + | union -0.0075 -0.0975 -0.1201 | ||
| + | age | ||
| + | race 0.0172 -0.1112 | ||
| + | occupation | ||
| + | sector | ||
| + | marr | ||
| + | |||
| </ | </ | ||
| < | < | ||
| - | </code> | + | > lm2 = lm(log(cps$wage) ~ . -age , data = cps) |
| + | > summary(lm2) | ||
| + | Call: | ||
| + | lm(formula = log(cps$wage) ~ . - age, data = cps) | ||
| + | |||
| + | Residuals: | ||
| + | | ||
| + | -2.16044 -0.29073 -0.00505 | ||
| + | |||
| + | Coefficients: | ||
| + | | ||
| + | (Intercept) | ||
| + | education | ||
| + | south | ||
| + | sex | ||
| + | experience | ||
| + | union 0.199987 | ||
| + | race | ||
| + | occupation | ||
| + | sector | ||
| + | marr | ||
| + | --- | ||
| + | Signif. codes: | ||
| + | |||
| + | Residual standard error: 0.4397 on 524 degrees of freedom | ||
| + | Multiple R-squared: | ||
| + | F-statistic: | ||
| + | |||
| + | > summary(lm1) | ||
| + | |||
| + | Call: | ||
| + | lm(formula = log(cps$wage) ~ ., data = cps) | ||
| + | |||
| + | Residuals: | ||
| + | | ||
| + | -2.16246 -0.29163 -0.00469 | ||
| + | |||
| + | Coefficients: | ||
| + | | ||
| + | (Intercept) | ||
| + | education | ||
| + | south | ||
| + | sex | ||
| + | experience | ||
| + | union 0.200483 | ||
| + | age | ||
| + | race | ||
| + | occupation | ||
| + | sector | ||
| + | marr | ||
| + | --- | ||
| + | Signif. codes: | ||
| + | |||
| + | Residual standard error: 0.4398 on 523 degrees of freedom | ||
| + | Multiple R-squared: | ||
| + | F-statistic: | ||
| + | |||
| + | > | ||
| + | > </ | ||
| + | |||
| + | ====== regression test with factors ====== | ||
| < | < | ||
| + | > cps$sex <- factor(cps$sex) | ||
| + | > cps$union <- factor(cps$union) | ||
| + | > cps$race <- factor(cps$race) | ||
| + | > cps$sector <- factor(cps$sector) | ||
| + | > cps$occupation <- factor(cps$occupation) | ||
| + | > cps$marr <- factor(cps$marr) | ||
| + | > str(cps) | ||
| + | ' | ||
| + | $ education : int 8 9 12 12 12 13 10 12 16 12 ... | ||
| + | $ south : int 0 0 0 0 0 0 1 0 0 0 ... | ||
| + | $ sex : Factor w/ 2 levels " | ||
| + | $ experience: int 21 42 1 4 17 9 27 9 11 9 ... | ||
| + | $ union : Factor w/ 2 levels " | ||
| + | $ wage : num 5.1 4.95 6.67 4 7.5 ... | ||
| + | $ age : int 35 57 19 22 35 28 43 27 33 27 ... | ||
| + | $ race : Factor w/ 3 levels " | ||
| + | $ occupation: Factor w/ 6 levels " | ||
| + | $ sector | ||
| + | $ marr : Factor w/ 2 levels " | ||
| </ | </ | ||
| < | < | ||
| + | > lm4 = lm(log(cps$wage) ~ . -age, data = cps) | ||
| + | > summary(lm4) | ||
| + | |||
| + | Call: | ||
| + | lm(formula = log(cps$wage) ~ . - age, data = cps) | ||
| + | |||
| + | Residuals: | ||
| + | | ||
| + | -2.36103 -0.28080 | ||
| + | |||
| + | Coefficients: | ||
| + | | ||
| + | (Intercept) | ||
| + | education | ||
| + | south | ||
| + | sex1 -0.216934 | ||
| + | experience | ||
| + | union1 | ||
| + | race2 | ||
| + | race3 0.079851 | ||
| + | occupation2 -0.364444 | ||
| + | occupation3 -0.210295 | ||
| + | occupation4 -0.383882 | ||
| + | occupation5 -0.050664 | ||
| + | occupation6 -0.265348 | ||
| + | sector1 | ||
| + | sector2 | ||
| + | marr1 0.062211 | ||
| + | --- | ||
| + | Signif. codes: | ||
| + | |||
| + | Residual standard error: 0.4278 on 518 degrees of freedom | ||
| + | Multiple R-squared: | ||
| + | F-statistic: | ||
| + | |||
| + | > | ||
| + | |||
| </ | </ | ||
| - | < | + | <code>> lm5 = lm(log(cps$wage) ~ . -age -race, data = cps) |
| + | > summary(lm5) | ||
| + | |||
| + | Call: | ||
| + | lm(formula = log(cps$wage) ~ . - age - race, data = cps) | ||
| + | |||
| + | Residuals: | ||
| + | | ||
| + | -2.34366 -0.28169 -0.00017 | ||
| + | |||
| + | Coefficients: | ||
| + | | ||
| + | (Intercept) | ||
| + | education | ||
| + | south | ||
| + | sex1 -0.213602 | ||
| + | experience | ||
| + | union1 | ||
| + | occupation2 -0.355381 | ||
| + | occupation3 -0.209820 | ||
| + | occupation4 -0.385680 | ||
| + | occupation5 -0.047694 | ||
| + | occupation6 -0.254277 | ||
| + | sector1 | ||
| + | sector2 | ||
| + | marr1 0.065464 | ||
| + | --- | ||
| + | Signif. codes: | ||
| + | |||
| + | Residual standard error: 0.4283 on 520 degrees of freedom | ||
| + | Multiple R-squared: | ||
| + | F-statistic: | ||
| + | |||
| + | > | ||
| </ | </ | ||
| + | < | ||
| + | > summary(lm6) | ||
| + | |||
| + | Call: | ||
| + | lm(formula = log(cps$wage) ~ . - age - race - occupation - marr - | ||
| + | sector, data = cps) | ||
| + | |||
| + | Residuals: | ||
| + | | ||
| + | -2.13809 -0.28681 -0.00078 | ||
| + | |||
| + | Coefficients: | ||
| + | | ||
| + | (Intercept) | ||
| + | education | ||
| + | south | ||
| + | sex1 -0.231978 | ||
| + | experience | ||
| + | union1 | ||
| + | --- | ||
| + | Signif. codes: | ||
| + | |||
| + | Residual standard error: 0.4433 on 528 degrees of freedom | ||
| + | Multiple R-squared: | ||
| + | F-statistic: | ||
| + | > </ | ||
multicolinearity.1545758112.txt.gz · Last modified: by hkimscil
