multiple_regression_exercise
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| multiple_regression_exercise [2025/10/30 13:25] – [추가설명] hkimscil | multiple_regression_exercise [2025/10/30 13:28] (current) – [추가설명] hkimscil | ||
|---|---|---|---|
| Line 342: | Line 342: | ||
| * Sales hat = **6.76500 - (0.0951)*Advertising** | * Sales hat = **6.76500 - (0.0951)*Advertising** | ||
| * Sales hat = 6.76500 + (-0.05412 + 0.35597) * Advertising | * Sales hat = 6.76500 + (-0.05412 + 0.35597) * Advertising | ||
| - | * Sales hat = 6.76500 - (0.30185)*Advertising | + | |
| 라고 하겠습니다. | 라고 하겠습니다. | ||
| Line 440: | Line 440: | ||
| </ | </ | ||
| 1) Bad 인 경우는 | 1) Bad 인 경우는 | ||
| - | * Sales hat = 6.76500 + -0.05412*Advertising 이 됩니다. | + | |
| 2) ShelveLoc Good일 경우, ShelveLOcGood = 1이고 나머지는 0이므로 | 2) ShelveLoc Good일 경우, ShelveLOcGood = 1이고 나머지는 0이므로 | ||
| Line 450: | Line 450: | ||
| 3) ShelveLoc Medium일 경우는 | 3) ShelveLoc Medium일 경우는 | ||
| - | Sales hat = 6.76500 + 0.09510 * Advertising 이 됩니다 | + | * **Sales hat = 6.76500 + 0.09510 * Advertising** 이 됩니다 |
| - | + | ||
| 위는 결국 lm.1 과 같은 모델이라는 뜻입니다. | 위는 결국 lm.1 과 같은 모델이라는 뜻입니다. | ||
| - | < | ||
| - | > summary(lm.1) | ||
| - | |||
| - | Call: | ||
| - | lm(formula = Sales ~ Advertising + Advertising: | ||
| - | |||
| - | Residuals: | ||
| - | Min 1Q Median | ||
| - | -6.7650 -1.7351 -0.1523 | ||
| - | |||
| - | Coefficients: | ||
| - | Estimate Std. Error t value Pr(> | ||
| - | (Intercept) | ||
| - | Advertising | ||
| - | Advertising: | ||
| - | Advertising: | ||
| - | --- | ||
| - | Signif. codes: | ||
| - | |||
| - | Residual standard error: 2.476 on 396 degrees of freedom | ||
| - | Multiple R-squared: | ||
| - | F-statistic: | ||
| - | |||
| - | > | ||
| - | |||
| - | |||
| - | </ | ||
multiple_regression_exercise.1761798342.txt.gz · Last modified: by hkimscil
