r:drawing_sampling_distribution_plot
Differences
This shows you the differences between two versions of the page.
| Next revision | Previous revision | ||
| r:drawing_sampling_distribution_plot [2025/09/11 07:22] – created hkimscil | r:drawing_sampling_distribution_plot [2025/09/11 07:32] (current) – hkimscil | ||
|---|---|---|---|
| Line 13: | Line 13: | ||
| sd.p1 <- sd(p1) | sd.p1 <- sd(p1) | ||
| - | p2 <- rnorm2(n.p, m.p+10, sd.p) | + | p2 <- rnorm2(n.p, m.p+5, sd.p) |
| m.p2 <- mean(p2) | m.p2 <- mean(p2) | ||
| sd.p2 <- sd(p2) | sd.p2 <- sd(p2) | ||
| Line 40: | Line 40: | ||
| se3 <- c(m.p1-3*se.z, | se3 <- c(m.p1-3*se.z, | ||
| abline(v=c(m.p1, | abline(v=c(m.p1, | ||
| - | | + | |
| ' | ' | ||
| ' | ' | ||
| Line 47: | Line 47: | ||
| treated.s <- sample(p2, n.s) | treated.s <- sample(p2, n.s) | ||
| m.treated.s <- mean(treated.s) | m.treated.s <- mean(treated.s) | ||
| - | abline(v=m.treated.s, | + | abline(v=m.treated.s, |
| + | |||
| + | se.z | ||
| diff <- m.treated.s-mean(p1) | diff <- m.treated.s-mean(p1) | ||
| Line 63: | Line 65: | ||
| </ | </ | ||
| + | |||
| + | < | ||
| + | > | ||
| + | > rm(list=ls()) | ||
| + | > | ||
| + | > rnorm2 <- function(n, | ||
| + | + | ||
| + | + } | ||
| + | > | ||
| + | > n.p <- 10000 | ||
| + | > m.p <- 100 | ||
| + | > sd.p <- 10 | ||
| + | > p1 <- rnorm2(n.p, m.p, sd.p) | ||
| + | > m.p1 <- mean(p1) | ||
| + | > sd.p1 <- sd(p1) | ||
| + | > | ||
| + | > p2 <- rnorm2(n.p, m.p+5, sd.p) | ||
| + | > m.p2 <- mean(p2) | ||
| + | > sd.p2 <- sd(p2) | ||
| + | > | ||
| + | > n.s <- 100 | ||
| + | > se.z <- c(sqrt(var(p1)/ | ||
| + | > | ||
| + | > x_values <- seq(mean(p1)-5*se.z, | ||
| + | + | ||
| + | + | ||
| + | > # Calculate the probability | ||
| + | > # density for a normal distribution | ||
| + | > y_values <- dnorm(x_values, | ||
| + | + mean = mean(p1), | ||
| + | + sd = se.z) | ||
| + | > | ||
| + | > # Plot the theoretical PDF | ||
| + | > plot(x_values, | ||
| + | + lwd=3, | ||
| + | + main = " | ||
| + | + xlab = " | ||
| + | > | ||
| + | > m.p1 <- mean(p1) | ||
| + | > se1 <- c(m.p1-se.z, | ||
| + | > se2 <- c(m.p1-2*se.z, | ||
| + | > se3 <- c(m.p1-3*se.z, | ||
| + | > abline(v=c(m.p1, | ||
| + | + col=c(' | ||
| + | + ' | ||
| + | + ' | ||
| + | + lwd=2) | ||
| + | > | ||
| + | > treated.s <- sample(p2, n.s) | ||
| + | > m.treated.s <- mean(treated.s) | ||
| + | > abline(v=m.treated.s, | ||
| + | > | ||
| + | > se.z | ||
| + | [1] 1 | ||
| + | > | ||
| + | > diff <- m.treated.s-mean(p1) | ||
| + | > diff/se.z | ||
| + | [1] 5.871217 | ||
| + | > | ||
| + | > # usual way - using sample' | ||
| + | > # instead of p1's variance to get | ||
| + | > # standard error value | ||
| + | > se.s <- sqrt(var(treated.s)/ | ||
| + | > se.s | ||
| + | [1] 0.9861042 | ||
| + | > diff/se.s | ||
| + | [1] 5.953951 | ||
| + | > | ||
| + | > pt(diff/ | ||
| + | [1] 3.994557e-08 | ||
| + | > t.test(treated.s, | ||
| + | |||
| + | One Sample t-test | ||
| + | |||
| + | data: treated.s | ||
| + | t = 5.954, df = 99, p-value = 3.995e-08 | ||
| + | alternative hypothesis: true mean is not equal to 100 | ||
| + | 95 percent confidence interval: | ||
| + | | ||
| + | sample estimates: | ||
| + | mean of x | ||
| + | | ||
| + | |||
| + | > | ||
| + | </ | ||
| + | {{: | ||
| + | |||
r/drawing_sampling_distribution_plot.1757542962.txt.gz · Last modified: by hkimscil
