r:logistic_regression_analysis
e.g. 1
> Logit(Turnover ~ JS, data=td) Data Frame: mydata Response Variable: Turnover Predictor Variable 1: JS Number of cases (rows) of data: 99 Number of cases retained for analysis: 98 BASIC ANALYSIS -- Estimated Model of Turnover for the Logit of Reference Group Membership Estimate Std Err z-value p-value Lower 95% Upper 95% (Intercept) -1.8554 0.6883 -2.695 0.007 -3.2044 -0.5063 JS 0.4378 0.1958 2.236 0.025 0.0540 0.8216 -- Odds Ratios and Confidence Intervals Odds Ratio Lower 95% Upper 95% (Intercept) 0.1564 0.0406 0.6027 JS 1.5492 1.0555 2.2740 -- Model Fit Null deviance: 131.746 on 97 degrees of freedom Residual deviance: 126.341 on 96 degrees of freedom AIC: 130.3413 Number of iterations to convergence: 4 ANALYSIS OF RESIDUALS AND INFLUENCE Data, Fitted, Residual, Studentized Residual, Dffits, Cook's Distance [sorted by Cook's Distance] [res_rows = 20 out of 98 cases (rows) of data] -------------------------------------------------------------------- JS Turnover fitted residual rstudent dffits cooks 69 6.00 quit 0.6838 -0.6838 -1.5688 -0.3725 0.08496 7 1.38 stay 0.2225 0.7775 1.7682 0.2877 0.06241 73 5.48 quit 0.6327 -0.6327 -1.4476 -0.2949 0.04889 58 5.43 quit 0.6276 -0.6276 -1.4363 -0.2877 0.04618 12 1.72 stay 0.2493 0.7507 1.6920 0.2486 0.04353 31 1.77 stay 0.2534 0.7466 1.6810 0.2429 0.04117 13 1.96 stay 0.2695 0.7305 1.6393 0.2219 0.03314 1 4.96 quit 0.5783 -0.5783 -1.3332 -0.2239 0.02609 33 4.88 quit 0.5698 -0.5698 -1.3162 -0.2138 0.02353 84 4.66 quit 0.5460 -0.5460 -1.2703 -0.1875 0.01757 63 4.65 quit 0.5449 -0.5449 -1.2682 -0.1863 0.01733 61 2.52 stay 0.3203 0.6797 1.5199 0.1668 0.01693 97 5.59 stay 0.6438 0.3562 0.9554 0.2021 0.01693 70 5.48 stay 0.6327 0.3673 0.9731 0.1985 0.01648 74 2.56 stay 0.3242 0.6758 1.5115 0.1635 0.01615 75 2.57 stay 0.3251 0.6749 1.5095 0.1626 0.01596 67 2.65 stay 0.3329 0.6671 1.4929 0.1563 0.01454 80 5.04 stay 0.5869 0.4131 1.0457 0.1813 0.01431 77 4.46 quit 0.5243 -0.5243 -1.2296 -0.1656 0.01336 39 4.43 quit 0.5210 -0.5210 -1.2235 -0.1625 0.01282 PREDICTION Probability threshold for classification stay: 0.5 0: quit 1: stay Data, Fitted Values, Standard Errors [sorted by fitted value] [pred_all=TRUE to see all intervals displayed] -------------------------------------------------------------------- JS Turnover label fitted std.err 24 0.23 quit 0 0.1475 0.08116 88 0.67 quit 0 0.1734 0.08096 48 1.05 quit 0 0.1985 0.07904 66 1.19 quit 0 0.2084 0.07790 ... for the rows of data where fitted is close to 0.5 ... JS Turnover label fitted std.err 14 4.14 stay 0 0.4893 0.06579 27 4.15 stay 0 0.4903 0.06609 64 4.26 quit 1 0.5024 0.06946 83 4.41 stay 1 0.5188 0.07431 39 4.43 quit 1 0.5210 0.07497 ... for the last 4 rows of sorted data ... JS Turnover label fitted std.err 70 5.48 stay 1 0.6327 0.1090 73 5.48 quit 1 0.6327 0.1090 97 5.59 stay 1 0.6438 0.1120 69 6.00 quit 1 0.6838 0.1215 -------------------------------------------------------------------- ---------------------------- Specified confusion matrices ---------------------------- Probability threshold for predicting stay: 0.5 Corresponding cutoff threshold for JS: 4.238 Baseline Predicted --------------------------------------------------- Total %Tot 0 1 %Correct --------------------------------------------------- 1 39 39.8 31 8 20.5 Turnover 0 59 60.2 49 10 83.1 --------------------------------------------------- Total 98 58.2 Accuracy: 58.16 Sensitivity: 20.51 Precision: 44.44 >
e.g. 2
d <- subset(iris, Species == "virginica" | Species == "versicolor") head(d) d$Species <- factor(d$Species) str(d) m <- glm(Species ~ ., data=d, family="binomial") round(fitted(m)[c(1:5, 51:55)],3) round(fitted(m)[c(1:5, 51:55)],2) f <- fitted(m) as.numeric(d$Species) ifelse(f > .5, 1, 0) == as.numeric(d$Species) - 1 is_correct <- ifelse(f > .5, 1, 0) == as.numeric(d$Species) - 1 sum(is_correct) sum(is_correct) / NROW(is_correct) predict(m, newdata=d[c(1,10,55),], type="response") d3 <- read.csv(file="d3.csv") round(predict(m, newdata=d3[c(1:5),], type="response"),2) is_correct <- ifelse(f > .5, 1, 0) == as.numeric(d$Species) - 1 sum(is_correct) sum(is_correct) / NROW(is_correct)
> d <- subset(iris, Species == "virginica" | Species == "versicolor") > d Sepal.Length Sepal.Width Petal.Length Petal.Width Species 51 7.0 3.2 4.7 1.4 versicolor 52 6.4 3.2 4.5 1.5 versicolor 53 6.9 3.1 4.9 1.5 versicolor 54 5.5 2.3 4.0 1.3 versicolor 55 6.5 2.8 4.6 1.5 versicolor 56 5.7 2.8 4.5 1.3 versicolor 57 6.3 3.3 4.7 1.6 versicolor 58 4.9 2.4 3.3 1.0 versicolor 59 6.6 2.9 4.6 1.3 versicolor 60 5.2 2.7 3.9 1.4 versicolor 61 5.0 2.0 3.5 1.0 versicolor 62 5.9 3.0 4.2 1.5 versicolor 63 6.0 2.2 4.0 1.0 versicolor 64 6.1 2.9 4.7 1.4 versicolor 65 5.6 2.9 3.6 1.3 versicolor 66 6.7 3.1 4.4 1.4 versicolor 67 5.6 3.0 4.5 1.5 versicolor 68 5.8 2.7 4.1 1.0 versicolor 69 6.2 2.2 4.5 1.5 versicolor 70 5.6 2.5 3.9 1.1 versicolor 71 5.9 3.2 4.8 1.8 versicolor 72 6.1 2.8 4.0 1.3 versicolor 73 6.3 2.5 4.9 1.5 versicolor 74 6.1 2.8 4.7 1.2 versicolor 75 6.4 2.9 4.3 1.3 versicolor 76 6.6 3.0 4.4 1.4 versicolor 77 6.8 2.8 4.8 1.4 versicolor 78 6.7 3.0 5.0 1.7 versicolor 79 6.0 2.9 4.5 1.5 versicolor 80 5.7 2.6 3.5 1.0 versicolor 81 5.5 2.4 3.8 1.1 versicolor 82 5.5 2.4 3.7 1.0 versicolor 83 5.8 2.7 3.9 1.2 versicolor 84 6.0 2.7 5.1 1.6 versicolor 85 5.4 3.0 4.5 1.5 versicolor 86 6.0 3.4 4.5 1.6 versicolor 87 6.7 3.1 4.7 1.5 versicolor 88 6.3 2.3 4.4 1.3 versicolor 89 5.6 3.0 4.1 1.3 versicolor 90 5.5 2.5 4.0 1.3 versicolor 91 5.5 2.6 4.4 1.2 versicolor 92 6.1 3.0 4.6 1.4 versicolor 93 5.8 2.6 4.0 1.2 versicolor 94 5.0 2.3 3.3 1.0 versicolor 95 5.6 2.7 4.2 1.3 versicolor 96 5.7 3.0 4.2 1.2 versicolor 97 5.7 2.9 4.2 1.3 versicolor 98 6.2 2.9 4.3 1.3 versicolor 99 5.1 2.5 3.0 1.1 versicolor 100 5.7 2.8 4.1 1.3 versicolor 101 6.3 3.3 6.0 2.5 virginica 102 5.8 2.7 5.1 1.9 virginica 103 7.1 3.0 5.9 2.1 virginica 104 6.3 2.9 5.6 1.8 virginica 105 6.5 3.0 5.8 2.2 virginica 106 7.6 3.0 6.6 2.1 virginica 107 4.9 2.5 4.5 1.7 virginica 108 7.3 2.9 6.3 1.8 virginica 109 6.7 2.5 5.8 1.8 virginica 110 7.2 3.6 6.1 2.5 virginica 111 6.5 3.2 5.1 2.0 virginica 112 6.4 2.7 5.3 1.9 virginica 113 6.8 3.0 5.5 2.1 virginica 114 5.7 2.5 5.0 2.0 virginica 115 5.8 2.8 5.1 2.4 virginica 116 6.4 3.2 5.3 2.3 virginica 117 6.5 3.0 5.5 1.8 virginica 118 7.7 3.8 6.7 2.2 virginica 119 7.7 2.6 6.9 2.3 virginica 120 6.0 2.2 5.0 1.5 virginica 121 6.9 3.2 5.7 2.3 virginica 122 5.6 2.8 4.9 2.0 virginica 123 7.7 2.8 6.7 2.0 virginica 124 6.3 2.7 4.9 1.8 virginica 125 6.7 3.3 5.7 2.1 virginica 126 7.2 3.2 6.0 1.8 virginica 127 6.2 2.8 4.8 1.8 virginica 128 6.1 3.0 4.9 1.8 virginica 129 6.4 2.8 5.6 2.1 virginica 130 7.2 3.0 5.8 1.6 virginica 131 7.4 2.8 6.1 1.9 virginica 132 7.9 3.8 6.4 2.0 virginica 133 6.4 2.8 5.6 2.2 virginica 134 6.3 2.8 5.1 1.5 virginica 135 6.1 2.6 5.6 1.4 virginica 136 7.7 3.0 6.1 2.3 virginica 137 6.3 3.4 5.6 2.4 virginica 138 6.4 3.1 5.5 1.8 virginica 139 6.0 3.0 4.8 1.8 virginica 140 6.9 3.1 5.4 2.1 virginica 141 6.7 3.1 5.6 2.4 virginica 142 6.9 3.1 5.1 2.3 virginica 143 5.8 2.7 5.1 1.9 virginica 144 6.8 3.2 5.9 2.3 virginica 145 6.7 3.3 5.7 2.5 virginica 146 6.7 3.0 5.2 2.3 virginica 147 6.3 2.5 5.0 1.9 virginica 148 6.5 3.0 5.2 2.0 virginica 149 6.2 3.4 5.4 2.3 virginica 150 5.9 3.0 5.1 1.8 virginica
> d$Species <- factor(d$Species) > str(d) 'data.frame': 100 obs. of 5 variables: $ Sepal.Length: num 7 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 ... $ Sepal.Width : num 3.2 3.2 3.1 2.3 2.8 2.8 3.3 2.4 2.9 2.7 ... $ Petal.Length: num 4.7 4.5 4.9 4 4.6 4.5 4.7 3.3 4.6 3.9 ... $ Petal.Width : num 1.4 1.5 1.5 1.3 1.5 1.3 1.6 1 1.3 1.4 ... $ Species : Factor w/ 2 levels "versicolor","virginica": 1 1 1 1 1 1 1 1 1 1 ...
> m <- glm(Species ~ ., data=d, family="binomial") > m Call: glm(formula = Species ~ ., family = "binomial", data = d) Coefficients: (Intercept) Sepal.Length Sepal.Width Petal.Length -42.638 -2.465 -6.681 9.429 Petal.Width 18.286 Degrees of Freedom: 99 Total (i.e. Null); 95 Residual Null Deviance: 138.6 Residual Deviance: 11.9 AIC: 21.9
> round(fitted(m)[c(1:5, 51:55)],3) 51 52 53 54 55 101 102 103 104 105 0.000 0.000 0.001 0.000 0.001 1.000 1.000 1.000 1.000 1.000 > round(fitted(m)[c(1:5, 51:55)],2) 51 52 53 54 55 101 102 103 104 105 0 0 0 0 0 1 1 1 1 1
> f <- fitted(m) > as.numeric(d$Species) [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [32] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 [63] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [94] 2 2 2 2 2 2 2 > ifelse(f > .5, 1, 0) == as.numeric(d$Species) - 1 51 52 53 54 55 56 57 58 59 60 61 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 62 63 64 65 66 67 68 69 70 71 72 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 73 74 75 76 77 78 79 80 81 82 83 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 84 85 86 87 88 89 90 91 92 93 94 FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 95 96 97 98 99 100 101 102 103 104 105 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 106 107 108 109 110 111 112 113 114 115 116 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 117 118 119 120 121 122 123 124 125 126 127 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 128 129 130 131 132 133 134 135 136 137 138 TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE 139 140 141 142 143 144 145 146 147 148 149 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 150 TRUE
> predict(m, newdata=d[c(1,10,55),], type="response") 51 60 105 1.171672e-05 1.481064e-05 9.999999e-01
> d3 <- read.csv("http://commres.net/wiki/_media/d3.csv") > round(predict(m, newdata=d3[c(1:5),], type="response"),2) 1 2 3 4 5 1.00 1.00 0.92 0.00 0.00
r/logistic_regression_analysis.txt · Last modified: 2023/12/07 08:00 by hkimscil