sampling_distribution_in_r
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| sampling_distribution_in_r [2024/03/20 09:54] – [Sampling distribution in R e.g. 1] hkimscil | sampling_distribution_in_r [2025/03/24 09:00] (current) – hkimscil | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ====== Sampling distribution in R e.g. 1 ====== | ====== Sampling distribution in R e.g. 1 ====== | ||
| < | < | ||
| + | # sampling distribution | ||
| n.ajstu <- 100000 | n.ajstu <- 100000 | ||
| mean.ajstu <- 100 | mean.ajstu <- 100 | ||
| Line 71: | Line 72: | ||
| plot(h900, add = T, col=" | plot(h900, add = T, col=" | ||
| - | se4 <- sqrt(var(ajstu)/ | ||
| - | se25 <- sqrt(var(ajstu)/ | ||
| - | se100 <- sqrt(var(ajstu)/ | ||
| - | se400 <- sqrt(var(ajstu)/ | ||
| - | se900 <- sqrt(var(ajstu)/ | ||
| - | se1600 <- sqrt(var(ajstu)/ | ||
| - | se2500 <- sqrt(var(ajstu)/ | ||
| - | sss <- c(4, | + | sss <- c(4, |
| - | ses <- rep (NA, length(sss)) | + | ses <- rep (NA, length(sss)) |
| for(i in 1: | for(i in 1: | ||
| ses[i] = sqrt(var(ajstu)/ | ses[i] = sqrt(var(ajstu)/ | ||
| } | } | ||
| + | ses.means4 <- sqrt(var(means4)) | ||
| + | ses.means25 <- sqrt(var(means25)) | ||
| + | ses.means100 <- sqrt(var(means100)) | ||
| + | ses.means400 <- sqrt(var(means400)) | ||
| + | ses.means900 <- sqrt(var(means900)) | ||
| + | ses.means1600 <- sqrt(var(means1600)) | ||
| + | ses.means2500 <- sqrt(var(means2500)) | ||
| + | ses.real <- c(ses.means4, | ||
| + | ses.means100, | ||
| + | ses.means900, | ||
| + | ses.means2500) | ||
| + | ses.real | ||
| + | |||
| ses | ses | ||
| se.1 <- ses | se.1 <- ses | ||
| - | se.2 <- 2*ses | + | se.2 <- 2 * ses |
| - | lower.part.2 <- mean(ajstu)-se.2 | + | |
| - | upper.part.2 <- mean(ajstu)+se.2 | + | |
| - | data.frame(cbind(sss, | + | |
| - | </ | + | |
| + | lower.s2 <- mean(ajstu)-se.2 | ||
| + | upper.s2 <- mean(ajstu)+se.2 | ||
| + | data.frame(cbind(sss, | ||
| + | </ | ||
| + | 아웃풋 | ||
| + | < | ||
| + | > n.ajstu <- 100000 | ||
| + | > mean.ajstu <- 100 | ||
| + | > sd.ajstu <- 10 | ||
| + | > set.seed(1024) | ||
| + | > ajstu <- rnorm2(n.ajstu, | ||
| + | > mean(ajstu) | ||
| + | [1] 100 | ||
| + | > sd(ajstu) | ||
| + | [1] 10 | ||
| + | > var(ajstu) | ||
| + | [,1] | ||
| + | [1,] 100 | ||
| + | > iter <- 10000 # # of sampling | ||
| + | > n.4 <- 4 | ||
| + | > means4 <- rep (NA, iter) | ||
| + | > for(i in 1:iter){ | ||
| + | + | ||
| + | + } | ||
| + | > n.25 <- 25 | ||
| + | > means25 <- rep (NA, iter) | ||
| + | > for(i in 1:iter){ | ||
| + | + | ||
| + | + } | ||
| + | > n.100 <- 100 | ||
| + | > means100 <- rep (NA, iter) | ||
| + | > for(i in 1:iter){ | ||
| + | + | ||
| + | + } | ||
| + | > n.400 <- 400 | ||
| + | > means400 <- rep (NA, iter) | ||
| + | > for(i in 1:iter){ | ||
| + | + | ||
| + | + } | ||
| + | > n.900 <- 900 | ||
| + | > means900 <- rep (NA, iter) | ||
| + | > for(i in 1:iter){ | ||
| + | + | ||
| + | + } | ||
| + | > n.1600 <- 1600 | ||
| + | > means1600 <- rep (NA, iter) | ||
| + | > for(i in 1:iter){ | ||
| + | + | ||
| + | + } | ||
| + | > n.2500 <- 2500 | ||
| + | > means2500 <- rep (NA, iter) | ||
| + | > for(i in 1:iter){ | ||
| + | + | ||
| + | + } | ||
| + | > h4 <- hist(means4) | ||
| + | > h25 <- hist(means25) | ||
| + | > h100 <- hist(means100) | ||
| + | > h400 <- hist(means400) | ||
| + | > h900 <- hist(means900) | ||
| + | > h1600 <- hist(means1600) | ||
| + | > h2500 <- hist(means2500) | ||
| + | > plot(h4, ylim=c(0, | ||
| + | > plot(h25, add = T, col=" | ||
| + | > plot(h100, add = T, col=" | ||
| + | > plot(h400, add = T, col=" | ||
| + | > plot(h900, add = T, col=" | ||
| + | > sss <- c(4, | ||
| + | > ses <- rep (NA, length(sss)) # std errors | ||
| + | > for(i in 1: | ||
| + | + | ||
| + | + } | ||
| + | > ses | ||
| + | [1] 5.0000000 2.0000000 1.0000000 0.5000000 0.3333333 0.2500000 | ||
| + | [7] 0.2000000 | ||
| + | > se.1 <- ses | ||
| + | > se.2 <- 2 * ses | ||
| + | > lower.s2 <- mean(ajstu)-se.2 | ||
| + | > upper.s2 <- mean(ajstu)+se.2 | ||
| + | > data.frame(cbind(sss, | ||
| + | | ||
| + | 1 4 5.0000000 90.00000 110.0000 | ||
| + | 2 25 2.0000000 96.00000 104.0000 | ||
| + | 3 100 1.0000000 98.00000 102.0000 | ||
| + | 4 400 0.5000000 99.00000 101.0000 | ||
| + | 5 900 0.3333333 99.33333 100.6667 | ||
| + | 6 1600 0.2500000 99.50000 100.5000 | ||
| + | 7 2500 0.2000000 99.60000 100.4000 | ||
| + | > sss <- c(4, | ||
| + | > ses <- rep (NA, length(sss)) # std errors | ||
| + | > for(i in 1: | ||
| + | + | ||
| + | + } | ||
| + | > ses.means4 <- sqrt(var(means4)) | ||
| + | > ses.means25 <- sqrt(var(means25)) | ||
| + | > ses.means100 <- sqrt(var(means100)) | ||
| + | > ses.means400 <- sqrt(var(means400)) | ||
| + | > ses.means900 <- sqrt(var(means900)) | ||
| + | > ses.means1600 <- sqrt(var(means1600)) | ||
| + | > ses.means2500 <- sqrt(var(means2500)) | ||
| + | > ses.real <- c(ses.means4, | ||
| + | + | ||
| + | + | ||
| + | + | ||
| + | > ses.real | ||
| + | [1] 4.9719142 2.0155741 0.9999527 0.5034433 0.3324414 0.2466634 | ||
| + | [7] 0.1965940 | ||
| + | > ses | ||
| + | [1] 5.0000000 2.0000000 1.0000000 0.5000000 0.3333333 0.2500000 | ||
| + | [7] 0.2000000 | ||
| + | > se.1 <- ses | ||
| + | > se.2 <- 2 * ses | ||
| + | > lower.s2 <- mean(ajstu)-se.2 | ||
| + | > upper.s2 <- mean(ajstu)+se.2 | ||
| + | > data.frame(cbind(sss, | ||
| + | | ||
| + | 1 4 5.0000000 4.9719142 90.00000 110.0000 | ||
| + | 2 25 2.0000000 2.0155741 96.00000 104.0000 | ||
| + | 3 100 1.0000000 0.9999527 98.00000 102.0000 | ||
| + | 4 400 0.5000000 0.5034433 99.00000 101.0000 | ||
| + | 5 900 0.3333333 0.3324414 99.33333 100.6667 | ||
| + | 6 1600 0.2500000 0.2466634 99.50000 100.5000 | ||
| + | 7 2500 0.2000000 0.1965940 99.60000 100.4000 | ||
| + | > | ||
| + | </ | ||
| + | {{: | ||
| + | 문제 . . . . | ||
| < | < | ||
| # n =1600 일 경우에 | # n =1600 일 경우에 | ||
| - | # sample의 평균이 | + | # sample의 평균이 |
| # 확률은 어떻게 구해야 할까? | # 확률은 어떻게 구해야 할까? | ||
| Line 104: | Line 233: | ||
| # 이것을 standard error라고 부른다 | # 이것을 standard error라고 부른다 | ||
| # 따라서 | # 따라서 | ||
| - | pnorm(101.5, mean(ajstu), | + | se.1600 <- sqrt(var(ajstu)/ |
| + | pnorm(100.15, | ||
| </ | </ | ||
| - | {{: | + | |
| ===== Sampling distribution in proportion in R ===== | ===== Sampling distribution in proportion in R ===== | ||
sampling_distribution_in_r.1710896057.txt.gz · Last modified: by hkimscil
