$$ \begin{array}{lllll} &\text{Source} &\text{SS} &\text{df} &\text{MS} &\text{F} \\ \hline &x_1 &\sum(\hat y_i-\bar y)^2 &1 &\frac{\text{SS}_{x_1}}{\text{df}_{x_1}} &\frac{\text{MS}_{x_1}}{\text{MS}_{\rm res}} \\ &\text{Residual} &\sum(y_i-\hat y_i)^2 &N-(1+1) &\frac{\text{SS}_{\rm res}}{\text{df}_{\rm res}} \\ &\text{Total} &\sum(y_i-\bar y)^2 &N-1 \end{array} $$
$$ \begin{array}{lllll} &\text{Source} &\text{SS} &\text{df} &\text{MS} &\text{F} \\ \hline &x_1 &\sum(\hat y_{x_{1i}\bar x_2}-\bar y)^2 &1 &\frac{\text{SS}_{x_1}}{\text{df}_{x_1}} &\frac{\text{MS}_{x_1}}{\text{MS}_{\rm res}} \\ &x_2 &\sum(\hat y_{\bar x_1x_{2i}}-\bar y)^2 &1 &\frac{\text{SS}_{x_2}}{\text{df}_{x_2}} &\frac{\text{MS}_{x_2}}{\text{MS}_{\rm res}} \\ &\text{Residual} &\sum(y_i-\hat y_i)^2 &N-(2+1) &\frac{\text{SS}_{\rm res}}{\text{df}_{\rm res}} \\ &\text{Total} &\sum(y_i-\bar y)^2 &N-1 \end{array} $$