simple_regression_example
Data examination
Here we are looking at several variables, instead of each of IV and DV. This is called multiple regression. We will discuss it later.
Download example file:
elemapi.sav
elemapi.sps
display labels.
Data Label description | ||
---|---|---|
Variable Labels | ||
Variable | Position | Label |
snum | 1 | school number |
dnum | 2 | district number |
api00 | 3 | api 2000 |
api99 | 4 | api 1999 |
growth | 5 | growth 1999 to 2000 |
meals | 6 | pct free meals |
ell | 7 | english language learners |
yr_rnd | 8 | year round school |
mobility | 9 | pct 1st year in school |
acs_k3 | 10 | avg class size k-3 |
acs_46 | 11 | avg class size 4-6 |
not_hsg | 12 | parent not hsg |
hsg | 13 | parent hsg |
some_col | 14 | parent some college |
col_grad | 15 | parent college grad |
grad_sch | 16 | parent grad school |
avg_ed | 17 | avg parent ed |
full | 18 | pct full credential |
emer | 19 | pct emer credential |
enroll | 20 | number of students |
mealcat | 21 | Percentage free meals in 3 categories |
우리가 관심이 있는 데이터는
2000년의 수학능력 (api00)
% 무료급식
% 풀타임 교원
k-3까지의 평균 클래스사이즈
이에 대한 부분적 자료 먼저 살펴보기 위해서는
list /variables api00 acs_k3 meals full /cases from 1 to 10.
api00 acs_k3 meals full 693 16 67 76.00 570 15 92 79.00 546 17 97 68.00 571 20 90 87.00 478 18 89 87.00 858 20 . 100.00 918 19 . 100.00 831 20 . 96.00 860 20 . 100.00 737 21 29 96.00 Number of cases read: 10 Number of cases listed: 10
descriptive /var = all .
Descriptive Statistics | |||||
---|---|---|---|---|---|
N | Minimum | Maximum | Mean | Std. Deviation | |
school number | 400 | 58 | 6072 | 2866.81 | 1543.811 |
district number | 400 | 41 | 796 | 457.74 | 184.823 |
api 2000 | 400 | 369 | 940 | 647.62 | 142.249 |
api 1999 | 400 | 333 | 917 | 610.21 | 147.136 |
growth 1999 to 2000 | 400 | -69 | 134 | 37.41 | 25.247 |
pct free meals | 315 | 6 | 100 | 71.99 | 24.386 |
english language learners | 400 | 0 | 91 | 31.45 | 24.839 |
year round school | 400 | 0 | 1 | .23 | .421 |
pct 1st year in school | 399 | 2 | 47 | 18.25 | 7.485 |
avg class size k-3 | 398 | -21 | 25 | 18.55 | 5.005 |
avg class size 4-6 | 397 | 20 | 50 | 29.69 | 3.841 |
parent not hsg | 400 | 0 | 100 | 21.25 | 20.676 |
parent hsg | 400 | 0 | 100 | 26.02 | 16.333 |
parent some college | 400 | 0 | 67 | 19.71 | 11.337 |
parent college grad | 400 | 0 | 100 | 19.70 | 16.471 |
parent grad school | 400 | 0 | 67 | 8.64 | 12.131 |
avg parent ed | 381 | 1.00 | 4.62 | 2.6685 | .76379 |
pct full credential | 400 | .42 | 100.00 | 66.0568 | 40.29793 |
pct emer credential | 400 | 0 | 59 | 12.66 | 11.746 |
number of students | 400 | 130 | 1570 | 483.47 | 226.448 |
Percentage free meals in 3 categories | 400 | 1 | 3 | 2.02 | .819 |
examine /variables=acs_k3 /plot histogram stem boxplot .
Descriptives | ||||
---|---|---|---|---|
Statistic | Std. Error | |||
avg class size k-3 | Mean | 18.55 | .251 | |
95% Confidence Interval for Mean | Lower Bound | 18.05 | ||
Upper Bound | 19.04 | |||
5% Trimmed Mean | 19.13 | |||
Median | 19.00 | |||
Variance | 25.049 | |||
Std. Deviation | 5.005 | |||
Minimum | -21 | |||
Maximum | 25 | |||
Range | 46 | |||
Interquartile Range | 2 | |||
Skewness | -7.106 | .122 | ||
Kurtosis | 53.014 | .244 |
avg class size k-3 Stem-and-Leaf Plot Frequency Stem & Leaf 8.00 Extremes (=<14.0) 1.00 15 . & .00 15 . 14.00 16 . 0000000 .00 16 . 20.00 17 . 0000000000 .00 17 . 64.00 18 . 00000000000000000000000000000000 .00 18 . 143.00 19 . 00000000000000000000000000000000000000000000000000000000000000000000000 .00 19 . 97.00 20 . 000000000000000000000000000000000000000000000000 .00 20 . 40.00 21 . 00000000000000000000 .00 21 . 7.00 22 . 000 .00 22 . 3.00 23 . 0 1.00 Extremes (>=25.0) Stem width: 1 Each leaf: 2 case(s) & denotes fractional leaves.
frequencies /var acs_k3.
avg class size k-3 | |||||
---|---|---|---|---|---|
Frequency | Percent | Valid Percent | Cumulative Percent | ||
Valid | -21 | 3 | .8 | .8 | .8 |
-20 | 2 | .5 | .5 | 1.3 | |
-19 | 1 | .3 | .3 | 1.5 | |
14 | 2 | .5 | .5 | 2.0 | |
15 | 1 | .3 | .3 | 2.3 | |
16 | 14 | 3.5 | 3.5 | 5.8 | |
17 | 20 | 5.0 | 5.0 | 10.8 | |
18 | 64 | 16.0 | 16.1 | 26.9 | |
19 | 143 | 35.8 | 35.9 | 62.8 | |
20 | 97 | 24.3 | 24.4 | 87.2 | |
21 | 40 | 10.0 | 10.1 | 97.2 | |
22 | 7 | 1.8 | 1.8 | 99.0 | |
23 | 3 | .8 | .8 | 99.7 | |
25 | 1 | .3 | .3 | 100.0 | |
Total | 398 | 99.5 | 100.0 | ||
Missing | System | 2 | .5 | ||
Total | 400 | 100.0 |
compute filtvar = (acs_k3 < 0). filter by filtvar. list cases /var snum dnum acs_k3.
snum dnum acs_k3 600 140 -20 596 140 -19 611 140 -20 595 140 -21 592 140 -21 602 140 -21 Number of cases read: 6 Number of cases listed: 6
filter off. IF (acs_k3<0) racs_k3=ABS(acs_k3). IF (acs_k3>=0) racs_k3=acs_k3. EXECUTE.
frequencies variables=full /format=notable /histogram .
pct full credential | |||||
---|---|---|---|---|---|
Frequency | Percent | Valid Percent | Cumulative Percent | ||
Valid | 0.42 | 1 | .3 | .3 | .3 |
0.45 | 1 | .3 | .3 | .5 | |
0.46 | 1 | .3 | .3 | .8 | |
0.47 | 1 | .3 | .3 | 1.0 | |
0.48 | 1 | .3 | .3 | 1.3 | |
0.5 | 3 | .8 | .8 | 2.0 | |
0.51 | 1 | .3 | .3 | 2.3 | |
0.52 | 1 | .3 | .3 | 2.5 | |
0.53 | 1 | .3 | .3 | 2.8 | |
0.54 | 1 | .3 | .3 | 3.0 | |
0.56 | 2 | .5 | .5 | 3.5 | |
0.57 | 2 | .5 | .5 | 4.0 | |
0.58 | 1 | .3 | .3 | 4.3 | |
0.59 | 3 | .8 | .8 | 5.0 | |
0.6 | 1 | .3 | .3 | 5.3 | |
0.61 | 4 | 1.0 | 1.0 | 6.3 | |
0.62 | 2 | .5 | .5 | 6.8 | |
0.63 | 1 | .3 | .3 | 7.0 | |
0.64 | 3 | .8 | .8 | 7.8 | |
0.65 | 3 | .8 | .8 | 8.5 | |
0.66 | 2 | .5 | .5 | 9.0 | |
0.67 | 6 | 1.5 | 1.5 | 10.5 | |
0.68 | 2 | .5 | .5 | 11.0 | |
0.69 | 3 | .8 | .8 | 11.8 | |
0.7 | 1 | .3 | .3 | 12.0 | |
0.71 | 1 | .3 | .3 | 12.3 | |
0.72 | 2 | .5 | .5 | 12.8 | |
0.73 | 6 | 1.5 | 1.5 | 14.3 | |
0.75 | 4 | 1.0 | 1.0 | 15.3 | |
0.76 | 2 | .5 | .5 | 15.8 | |
0.77 | 2 | .5 | .5 | 16.3 | |
0.79 | 3 | .8 | .8 | 17.0 | |
0.8 | 5 | 1.3 | 1.3 | 18.3 | |
0.81 | 8 | 2.0 | 2.0 | 20.3 | |
0.82 | 2 | .5 | .5 | 20.8 | |
0.83 | 2 | .5 | .5 | 21.3 | |
0.84 | 2 | .5 | .5 | 21.8 | |
0.85 | 3 | .8 | .8 | 22.5 | |
0.86 | 2 | .5 | .5 | 23.0 | |
0.9 | 3 | .8 | .8 | 23.8 | |
0.92 | 1 | .3 | .3 | 24.0 | |
0.93 | 1 | .3 | .3 | 24.3 | |
0.94 | 2 | .5 | .5 | 24.8 | |
0.95 | 2 | .5 | .5 | 25.3 | |
0.96 | 1 | .3 | .3 | 25.5 | |
1 | 2 | .5 | .5 | 26.0 | |
37 | 1 | .3 | .3 | 26.3 | |
41 | 1 | .3 | .3 | 26.5 | |
44 | 2 | .5 | .5 | 27.0 | |
45 | 2 | .5 | .5 | 27.5 | |
46 | 1 | .3 | .3 | 27.8 | |
48 | 1 | .3 | .3 | 28.0 | |
53 | 1 | .3 | .3 | 28.3 | |
57 | 1 | .3 | .3 | 28.5 | |
58 | 3 | .8 | .8 | 29.3 | |
59 | 1 | .3 | .3 | 29.5 | |
61 | 1 | .3 | .3 | 29.8 | |
63 | 2 | .5 | .5 | 30.3 | |
64 | 1 | .3 | .3 | 30.5 | |
65 | 1 | .3 | .3 | 30.8 | |
68 | 2 | .5 | .5 | 31.3 | |
69 | 3 | .8 | .8 | 32.0 | |
70 | 1 | .3 | .3 | 32.3 | |
71 | 3 | .8 | .8 | 33.0 | |
72 | 1 | .3 | .3 | 33.3 | |
73 | 2 | .5 | .5 | 33.8 | |
74 | 1 | .3 | .3 | 34.0 | |
75 | 4 | 1.0 | 1.0 | 35.0 | |
76 | 4 | 1.0 | 1.0 | 36.0 | |
77 | 2 | .5 | .5 | 36.5 | |
78 | 4 | 1.0 | 1.0 | 37.5 | |
79 | 3 | .8 | .8 | 38.3 | |
80 | 10 | 2.5 | 2.5 | 40.8 | |
81 | 4 | 1.0 | 1.0 | 41.8 | |
82 | 3 | .8 | .8 | 42.5 | |
83 | 9 | 2.3 | 2.3 | 44.8 | |
84 | 4 | 1.0 | 1.0 | 45.8 | |
85 | 8 | 2.0 | 2.0 | 47.8 | |
86 | 5 | 1.3 | 1.3 | 49.0 | |
87 | 12 | 3.0 | 3.0 | 52.0 | |
88 | 6 | 1.5 | 1.5 | 53.5 | |
89 | 5 | 1.3 | 1.3 | 54.8 | |
90 | 9 | 2.3 | 2.3 | 57.0 | |
91 | 8 | 2.0 | 2.0 | 59.0 | |
92 | 7 | 1.8 | 1.8 | 60.8 | |
93 | 12 | 3.0 | 3.0 | 63.8 | |
94 | 10 | 2.5 | 2.5 | 66.3 | |
95 | 17 | 4.3 | 4.3 | 70.5 | |
96 | 17 | 4.3 | 4.3 | 74.8 | |
97 | 11 | 2.8 | 2.8 | 77.5 | |
98 | 9 | 2.3 | 2.3 | 79.8 | |
100 | 81 | 20.3 | 20.3 | 100.0 | |
Total | 400 | 100.0 | 100.0 |
frequencies variables=full .
IF (full <= 1) rfull=full * 100. IF (full > 1) rfull=full. EXECUTE.
simple_regression_example.txt · Last modified: 2017/05/24 08:56 by hkimscil