using_dummy_variables
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| using_dummy_variables [2016/05/09 08:35] – hkimscil | using_dummy_variables [2019/10/18 10:18] (current) – hkimscil | ||
|---|---|---|---|
| Line 2: | Line 2: | ||
| ===== 2 groups ===== | ===== 2 groups ===== | ||
| data: | data: | ||
| - | {{: | + | {{: |
| - | {{elemapi2_categories.sps}} | + | {{:elemapi2_categories.sps}} |
| + | |||
| + | {{: | ||
| + | in r < | ||
| < | < | ||
| Line 14: | Line 17: | ||
| meals 6 pct free meals | meals 6 pct free meals | ||
| ell 7 english language learners | ell 7 english language learners | ||
| - | yr_rnd 8 year round school 무방학학교 | + | yr_rnd 8 year round school 무방학학교 |
| mobility 9 pct 1st year in school | mobility 9 pct 1st year in school | ||
| acs_k3 10 avg class size k-3 | acs_k3 10 avg class size k-3 | ||
| Line 107: | Line 110: | ||
| 만약에 ANOVA 테스트에서와 같이 종류가 3개 이상인 변인은 어떻게 처리해야 할까? 아래는 이를 regression으로 테스트 한 결과이다. | 만약에 ANOVA 테스트에서와 같이 종류가 3개 이상인 변인은 어떻게 처리해야 할까? 아래는 이를 regression으로 테스트 한 결과이다. | ||
| - | < | + | < |
| - | Model R R Square Adjusted R Square Std. Error of the Estimate | + | > mod2 <- lm(api00 ~ factor(mealcat), data=datavar) |
| - | 1 .867a .752 .752 70.908 | + | > mod2 |
| - | a. Predictors: | + | |
| - | ANOVA(b) | + | Call: |
| - | Model Sum of Squares df Mean Square F Sig. | + | lm(formula = api00 ~ factor(mealcat), data = datavar) |
| - | 1 Regression 6072527.519 1 6072527.519 1207.742 .000a | + | |
| - | Residual 2001144.479 398 5028.001 | + | |
| - | Total 8073671.997 399 | + | |
| - | a. Predictors: | + | |
| - | b. Dependent Variable: api 2000 | + | |
| - | Coefficients(a) | + | Coefficients: |
| - | Unstandardized Coefficients Standardized | + | (Intercept) |
| - | Model B Std. Error Beta t Sig. | + | |
| - | 1 (Constant) 950.987 9.422 100.935 .000 | + | |
| - | Percentage of -150.553 4.332 -.867 -34.753 .000 | + | > summary(mod2) |
| - | free meals in | + | |
| - | 3 categories | + | Call: |
| - | a. Dependent Variable: api 2000 | + | lm(formula = api00 ~ factor(mealcat), |
| + | |||
| + | Residuals: | ||
| + | | ||
| + | -253.394 | ||
| + | |||
| + | Coefficients: | ||
| + | Estimate | ||
| + | (Intercept) 805.718 6.169 130.60 < | ||
| + | factor(mealcat)2 | ||
| + | factor(mealcat)3 -301.338 | ||
| + | --- | ||
| + | Signif. codes: | ||
| + | |||
| + | Residual standard error: 70.61 on 397 degrees of freedom | ||
| + | Multiple R-squared: | ||
| + | F-statistic: | ||
| + | |||
| + | > | ||
| </ | </ | ||
| Line 332: | Line 347: | ||
| 해석에 대해서 . . . . | 해석에 대해서 . . . . | ||
| ^ **interpretation** | ^ **interpretation** | ||
| - | | | mealcat=1 | + | | | mealcat=1 |
| |yr_rnd=0 | |yr_rnd=0 | ||
| |yr_rnd=1 | |yr_rnd=1 | ||
| Line 338: | Line 353: | ||
| ^ **interpretation** | ^ **interpretation** | ||
| - | | | mealcat=1 | + | | | mealcat=1 |
| | | mealcat=1-> | | | mealcat=1-> | ||
| | yr_rnd=0 | | yr_rnd=0 | ||
using_dummy_variables.1462752348.txt.gz · Last modified: by hkimscil
