b:head_first_statistics:binomial_distribution
Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
b:head_first_statistics:binomial_distribution [2025/10/07 06:40] – created hkimscil | b:head_first_statistics:binomial_distribution [2025/10/07 06:45] (current) – [Proof of Binomial Expected Value and Variance] hkimscil | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Binomial | + | ======= Binomial |
- 1번의 시행에서 특정 사건 A가 발생할 확률을 p라고 하면 | - 1번의 시행에서 특정 사건 A가 발생할 확률을 p라고 하면 | ||
Line 54: | Line 54: | ||
$$X \sim B(n,p)$$ | $$X \sim B(n,p)$$ | ||
+ | ====== Expectation and Variance of Binomial Distribution ====== | ||
+ | Toss a fair coin once. What is the distribution of the number of heads? | ||
+ | * A single trial | ||
+ | * The trial can be one of two possible outcomes -- success and failure | ||
+ | * P(success) = p | ||
+ | * P(failure) = 1-p | ||
+ | |||
+ | X = 0, 1 (failure and success) | ||
+ | $P(X=x) = p^{x}(1-p)^{1-x}$ or | ||
+ | $P(x) = p^{x}(1-p)^{1-x}$ | ||
+ | |||
+ | 참고. | ||
+ | | x | 0 | 1 | | ||
+ | | p(x) | q = (1-p) | p | | ||
+ | |||
+ | When x = 0 (failure), $P(X = 0) = p^{0}(1-p)^{1-0} = (1-p)$ = Probability of failure | ||
+ | When x = 1 (success), $P(X = 1) = p^{1}(1-p)^{0} = p $ = Probability of success | ||
+ | |||
+ | |||
+ | This is called Bernoulli distribution. | ||
+ | * Bernoulli distribution expands to binomial distribution, | ||
+ | * Binomial distribution = The distribution of number of success in n independent Bernoulli trials. | ||
+ | * Geometric distribution = The distribution of number of trials to get the first success in independent Bernoulli trials. | ||
+ | |||
+ | $$X \sim B(1,p)$$ | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | E(X) & = & \sum{x * p(x)} \\ | ||
+ | & = & (0*q) + (1*p) \\ | ||
+ | & = & p | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | |||
+ | \begin{eqnarray*} | ||
+ | Var(X) & = & E((X - E(X))^{2}) \\ | ||
+ | & = & \sum_{x}(x-E(X))^2p(x) | ||
+ | & = & (0 - p)^{2}*q + (1 - p)^{2}*p | ||
+ | & = & (0^2 - 2p0 + p^2)*q + (1-2p+p^2)*p \\ | ||
+ | & = & p^2*(1-p) + (1-2p+p^2)*p \\ | ||
+ | & = & p^2 - p^3 + p - 2p^2 + p^3 \\ | ||
+ | & = & p - p^2 \\ | ||
+ | & = & p(1-p) \\ | ||
+ | & = & pq | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | For generalization, | ||
+ | |||
+ | $$X \sim B(n,p)$$ | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | E(X) & = & E(X_{1}) + E(X_{2}) + ... + E(X_{n}) \\ | ||
+ | & = & n * E(X_{i}) \\ | ||
+ | & = & n * p | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | Var(X) & = & Var(X_{1}) + Var(X_{2}) + ... + Var(X_{n}) \\ | ||
+ | & = & n * Var(X_{i}) \\ | ||
+ | & = & n * p * q | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | ====== e.g., ====== | ||
+ | <WRAP box> | ||
+ | In the latest round of Who Wants To Win A Swivel Chair, there are 5 questions. The probability of | ||
+ | getting a successful outcome in a single trial is 0.25 | ||
+ | - What’s the probability of getting exactly two questions right? | ||
+ | - What’s the probability of getting exactly three questions right? | ||
+ | - What’s the probability of getting two or three questions right? | ||
+ | - What’s the probability of getting no questions right? | ||
+ | - What are the expectation and variance? | ||
+ | </ | ||
+ | |||
+ | Ans 1. | ||
+ | < | ||
+ | p <- .25 | ||
+ | q <- 1-p | ||
+ | r <- 2 | ||
+ | n <-5 | ||
+ | # combinations of 5,2 | ||
+ | c <- choose(n, | ||
+ | ans1 <- c*(p^r)*(q^(n-r)) | ||
+ | ans1 # or | ||
+ | |||
+ | choose(n, r)*(p^r)*(q^(n-r)) | ||
+ | |||
+ | dbinom(r, n, p) | ||
+ | |||
+ | </ | ||
+ | |||
+ | < | ||
+ | > p <- .25 | ||
+ | > q <- 1-p | ||
+ | > r <- 2 | ||
+ | > n <-5 | ||
+ | > # combinations of 5,2 | ||
+ | > c <- choose(n,r) | ||
+ | > ans <- c*(p^r)*(q^(n-r)) | ||
+ | > ans | ||
+ | [1] 0.2636719 | ||
+ | > | ||
+ | > choose(n, r)*(p^r)*(q^(n-r)) | ||
+ | [1] 0.2636719 | ||
+ | > | ||
+ | > dbinom(r, n, p) | ||
+ | [1] 0.2636719 | ||
+ | > | ||
+ | > | ||
+ | </ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Ans 2. | ||
+ | < | ||
+ | p <- .25 | ||
+ | q <- 1-p | ||
+ | r <- 3 | ||
+ | n <-5 | ||
+ | # combinations of 5,3 | ||
+ | c <- choose(n,r) | ||
+ | ans2 <- c*(p^r)*(q^(n-r)) | ||
+ | ans2 | ||
+ | |||
+ | choose(n, r)*(p^r)*(q^(n-r)) | ||
+ | |||
+ | dbinom(r, n, p) | ||
+ | |||
+ | </ | ||
+ | < | ||
+ | > p <- .25 | ||
+ | > q <- 1-p | ||
+ | > r <- 3 | ||
+ | > n <-5 | ||
+ | > # combinations of 5,3 | ||
+ | > c <- choose(n,r) | ||
+ | > ans2 <- c*(p^r)*(q^(n-r)) | ||
+ | > ans2 | ||
+ | [1] 0.08789062 | ||
+ | > | ||
+ | > choose(n, | ||
+ | [1] 0.08789062 | ||
+ | > | ||
+ | > dbinom(r, n, p) | ||
+ | [1] 0.08789063 | ||
+ | > | ||
+ | > | ||
+ | </ | ||
+ | |||
+ | Ans 3. 중요 | ||
+ | < | ||
+ | ans1 + ans2 | ||
+ | dbinom(2, 5, .25) + dbinom(3, 5, .25) | ||
+ | dbinom(2:3, 5, .25) | ||
+ | sum(dbinom(2: | ||
+ | pbinom(3, 5, .25) - pbinom(1, 5, .25) | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | > ans1 + ans2 | ||
+ | [1] 0.3515625 | ||
+ | > dbinom(2, 5, .25) + dbinom(3, 5, .25) | ||
+ | [1] 0.3515625 | ||
+ | > dbinom(2:3, 5, .25) | ||
+ | [1] 0.26367187 0.08789063 | ||
+ | > sum(dbinom(2: | ||
+ | [1] 0.3515625 | ||
+ | > pbinom(3, 5, .25) - pbinom(1, 5, .25) | ||
+ | [1] 0.3515625 | ||
+ | > | ||
+ | </ | ||
+ | |||
+ | Ans 4. | ||
+ | < | ||
+ | p <- .25 | ||
+ | q <- 1-p | ||
+ | r <- 0 | ||
+ | n <-5 | ||
+ | # combinations of 5,3 | ||
+ | c <- choose(n,r) | ||
+ | ans4 <- c*(p^r)*(q^(n-r)) | ||
+ | ans4 | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | > q <- 1-p | ||
+ | > r <- 0 | ||
+ | > n <-5 | ||
+ | > # combinations of 5,3 | ||
+ | > c <- choose(n,r) | ||
+ | > ans4 <- c*(p^r)*(q^(n-r)) | ||
+ | > ans4 | ||
+ | [1] 0.2373047 | ||
+ | > </ | ||
+ | |||
+ | Ans 5 | ||
+ | < | ||
+ | p <- .25 | ||
+ | q <- 1-p | ||
+ | n <- 5 | ||
+ | exp.x <- n*p | ||
+ | exp.x | ||
+ | </ | ||
+ | < | ||
+ | > q <- 1-p | ||
+ | > n <- 5 | ||
+ | > exp.x <- n*p | ||
+ | > exp.x | ||
+ | [1] 1.25</ | ||
+ | |||
+ | < | ||
+ | p <- .25 | ||
+ | q <- 1-p | ||
+ | n <- 5 | ||
+ | var.x <- n*p*q | ||
+ | var.x | ||
+ | </ | ||
+ | < | ||
+ | > q <- 1-p | ||
+ | > n <- 5 | ||
+ | > var.x <- n*p*q | ||
+ | > var.x | ||
+ | [1] 0.9375 | ||
+ | > </ | ||
+ | |||
+ | Q. 한 문제를 맞힐 확률은 1/4 이다. 총 여섯 문제가 있다고 할 때, 0에서 5 문제를 맞힐 확률은? dbinom을 이용해서 구하시오. | ||
+ | < | ||
+ | p <- 1/4 | ||
+ | q <- 1-p | ||
+ | n <- 6 | ||
+ | pbinom(5, n, p) | ||
+ | |||
+ | 1 - dbinom(6, n, p) | ||
+ | </ | ||
+ | < | ||
+ | > p <- 1/4 | ||
+ | > q <- 1-p | ||
+ | > n <- 6 | ||
+ | > pbinom(5, n, p) | ||
+ | [1] 0.9997559 | ||
+ | > 1 - dbinom(6, n, p) | ||
+ | [1] 0.9997559 | ||
+ | |||
+ | </ | ||
+ | |||
+ | 중요 . . . . | ||
+ | < | ||
+ | # http:// | ||
+ | # ################################################################## | ||
+ | # | ||
+ | p <- 1/4 | ||
+ | q <- 1 - p | ||
+ | n <- 5 | ||
+ | r <- 0 | ||
+ | all.dens <- dbinom(0:n, n, p) | ||
+ | all.dens | ||
+ | sum(all.dens) | ||
+ | |||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | all.dens | ||
+ | |||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | sum(all.dens) | ||
+ | # | ||
+ | (p+q)^n | ||
+ | # note that n = whatever, (p+q)^n = 1 | ||
+ | |||
+ | </ | ||
+ | |||
+ | < | ||
+ | > # http:// | ||
+ | > # ################################################################## | ||
+ | > # | ||
+ | > p <- 1/4 | ||
+ | > q <- 1 - p | ||
+ | > n <- 5 | ||
+ | > r <- 0 | ||
+ | > all.dens <- dbinom(0:n, n, p) | ||
+ | > all.dens | ||
+ | [1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 | ||
+ | [5] 0.0146484375 0.0009765625 | ||
+ | > sum(all.dens) | ||
+ | [1] 1 | ||
+ | > | ||
+ | > choose(5, | ||
+ | [1] 0.2373047 | ||
+ | > choose(5, | ||
+ | [1] 0.3955078 | ||
+ | > choose(5, | ||
+ | [1] 0.2636719 | ||
+ | > choose(5, | ||
+ | [1] 0.08789062 | ||
+ | > choose(5, | ||
+ | [1] 0.01464844 | ||
+ | > choose(5, | ||
+ | [1] 0.0009765625 | ||
+ | > all.dens | ||
+ | [1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 | ||
+ | [5] 0.0146484375 0.0009765625 | ||
+ | > | ||
+ | > choose(5, | ||
+ | + | ||
+ | + | ||
+ | + | ||
+ | + | ||
+ | + | ||
+ | [1] 1 | ||
+ | > sum(all.dens) | ||
+ | [1] 1 | ||
+ | > # | ||
+ | > (p+q)^n | ||
+ | [1] 1 | ||
+ | > # note that n = whatever, (p+q)^n = 1 | ||
+ | > | ||
+ | </ | ||
+ | ====== Proof of Expected Value and Variance in Binomial Distribution ====== | ||
+ | [[:Mean and Variance of Binomial Distribution|이항분포에서의 기댓값과 분산에 대한 수학적 증명]], Mathematical proof of Binomial Distribution Expected value and Variance |
b/head_first_statistics/binomial_distribution.1759786841.txt.gz · Last modified: by hkimscil