User Tools

Site Tools


b:head_first_statistics:geometric_binomial_and_poisson_distributions

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:geometric_binomial_and_poisson_distributions [2024/10/28 07:31] – [Poisson Distribution] hkimscilb:head_first_statistics:geometric_binomial_and_poisson_distributions [2024/10/28 08:37] (current) – [Broken Cookies case] hkimscil
Line 976: Line 976:
 \end{eqnarray*} \end{eqnarray*}
  
-왜 $e^{\lambda} = \left(1 + \lambda + \dfrac{\lambda^{2}}{2!} + \dfrac{\lambda^{3}}{3!} + . . . \right)$ 인지는 [[:Taylor series]] 문서를 참조. 이것이 의미하는 것은 r이 0에서 무한대로 갈 때의 확률값의 분포를 말하므로 전체 분포가 1이 됨을 의미한다. +왜 $e^{\lambda} = \left(1 + \lambda + \dfrac{\lambda^{2}}{2!} + \dfrac{\lambda^{3}}{3!} + . . . \right)$ 인지는 [[:Taylor series]] 문서를 참조.  
 +이것이 의미하는 것은 r이 0에서 무한대로 갈 때의 확률값의 분포를 말하므로 전체 분포가 1이 됨을 의미한다. 아래 "What does the Poisson distribution look like?" 참조
  
 <code> <code>
Line 1031: Line 1032:
 [{{:b:head_first_statistics:pasted:20191107-095627.png|Figure 1. lambda=30}}] [{{:b:head_first_statistics:pasted:20191107-095627.png|Figure 1. lambda=30}}]
  
-lambda가 클 수록 좌우대칭의 종형분포를 이루고 ((Figure 1)), 작을 수로 오른 쪽으로 편향된 (skewed to the right) 혹은 양의방향으로 편향된(positively skewed) 분포를 ((Figure 2)) 이룬다.+lambda가 클 수록 좌우대칭의 종형분포를 이루고 ((Figure 1)), 작을 수록 오른 쪽으로 편향된 (skewed to the right) 혹은 양의방향으로 편향된(positively skewed) 분포를 ((Figure 2)) 이룬다.
  
 <code> <code>
Line 1069: Line 1070:
  
 \begin{eqnarray*} \begin{eqnarray*}
-P(X=0) & = & \frac{e^{-3.4}*3.4^{0}} {0!}  \\+P(X=0) & = & e^{-3.4} * \frac{3.4^{0}} {0!}  \\
 & = & e^{-3.4} \\ & = & e^{-3.4} \\
 & = & 0.03337327  & = & 0.03337327 
Line 1075: Line 1076:
  
 <code> <code>
 +# R 에서 계산
 > e^(-3.4) > e^(-3.4)
 +[1] 0.03337327
 +
 +# 혹은 
 +> dpois(0, 3.4)
 [1] 0.03337327 [1] 0.03337327
  
 </code> </code>
 +
 +포아송 분포를 따르는 확률에서 아무것도 일어나지 않을 때의 확률은 e<sup>-lambda </sup>가 된다. 예를 들면 119 전화가 한시간에 걸려오는 확률이 5번이라고 할 때,  지난 한 시간동안 한 건의 전화도 없을 확률은? 
 +\begin{eqnarray*}
 +P(X=0) & = & e^{-5} * \frac{5^{0}} {0!}  \\
 +& = & e^{-5} \\
 +& = & 0.006737947
 +\end{eqnarray*}
 +<code>
 +> lamba <- 5
 +> e <- exp(1)
 +> px.0 <- e^(-lamba)
 +
 +> px.0
 +[1] 0.006737947
 +
 +# or 
 +> dpois(0,5)
 +[1] 0.006737947
 +</code>
 +
 +
  
 __2. What’s the probability of the machine malfunctioning three times next week?__ __2. What’s the probability of the machine malfunctioning three times next week?__
Line 1163: Line 1190:
 **How did Kate find the probability so quickly, and avoid the error on her calculator?** **How did Kate find the probability so quickly, and avoid the error on her calculator?**
 </WRAP> </WRAP>
 +우선 위의 문제를 binomial distribution 문제로 생각하면 답은 
 +\begin{eqnarray*}
 +P(r=15) & = & _{100}C_{15} * 0.1^{15} * 0.99^{85}\\
 +\end{eqnarray*}
 +라고 볼 수 있다. 
  
 \begin{eqnarray} \begin{eqnarray}
Line 1200: Line 1232:
 b(100, 0.1)이므로  b(100, 0.1)이므로 
 n*p = 10 = lambda  n*p = 10 = lambda 
-따라서+따라서 Pois 분포로 보는 답은  
 +lambda = 10 일때 P(r=15)값을 구하는 문제로  
 + 
 +\begin{eqnarray*} 
 +P(r = 15) & = & e^{-10} * \frac {10^{15}}{15!} \\ 
 +& = & 0.0347180 
 +\end{eqnarray*}
 <code> <code>
 > dpois(x=15, lambda=10) > dpois(x=15, lambda=10)
b/head_first_statistics/geometric_binomial_and_poisson_distributions.1730068310.txt.gz · Last modified: 2024/10/28 07:31 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki