b:head_first_statistics:geometric_binomial_and_poisson_distributions
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
b:head_first_statistics:geometric_binomial_and_poisson_distributions [2024/10/28 07:45] – [Exercise] hkimscil | b:head_first_statistics:geometric_binomial_and_poisson_distributions [2024/10/28 08:37] (current) – [Broken Cookies case] hkimscil | ||
---|---|---|---|
Line 1190: | Line 1190: | ||
**How did Kate find the probability so quickly, and avoid the error on her calculator? | **How did Kate find the probability so quickly, and avoid the error on her calculator? | ||
</ | </ | ||
+ | 우선 위의 문제를 binomial distribution 문제로 생각하면 답은 | ||
+ | \begin{eqnarray*} | ||
+ | P(r=15) & = & _{100}C_{15} * 0.1^{15} * 0.99^{85}\\ | ||
+ | \end{eqnarray*} | ||
+ | 라고 볼 수 있다. | ||
\begin{eqnarray} | \begin{eqnarray} | ||
Line 1227: | Line 1232: | ||
b(100, 0.1)이므로 | b(100, 0.1)이므로 | ||
n*p = 10 = lambda | n*p = 10 = lambda | ||
- | 따라서 | + | 따라서 |
+ | lambda = 10 일때 P(r=15)값을 구하는 문제로 | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | P(r = 15) & = & e^{-10} * \frac {10^{15}}{15!} \\ | ||
+ | & = & 0.0347180 | ||
+ | \end{eqnarray*} | ||
< | < | ||
> dpois(x=15, lambda=10) | > dpois(x=15, lambda=10) |
b/head_first_statistics/geometric_binomial_and_poisson_distributions.1730069110.txt.gz · Last modified: 2024/10/28 07:45 by hkimscil